Advertisement

In Vitro Expansion of Human B Cells for the Production of Human Monoclonal Antibodies

  • James W. Larrick
  • Bradley J. Dyer
  • George Senyk
  • Sarah M. Hart
  • Richard Moss
  • David Lippman
  • Mark C. Jahnsen
  • Janet Wang
  • Howard Weintraub
  • Andrew A. Raubitschek

Abstract

Early work from a number of laboratories has demonstrated the low frequency with which peripheral human B cells secreting specific monoclonal antibodies can be rescued by cell fusion (Olsson et al., 1983; Kozbor and Roder, 1983b, 1984). Use of spleen and lymph node tissue only marginally improved these results. The development of new human fusion partners (Larrick et al.,1983; Glassy et al., 1983; Kozbor and Roder, 1983; Chiorazzi et al., 1982; Abrams et al., 1983), mouse—human heteromyeloma cell lines (Teng et al., 1983), mouse—human fusion partners (Kozbor and Roder, 1984, 1983b), and optimization of fusion protocols (Buck et al., 1984; Truitt et al., 1984) has slightly increased the frequency of specific antibodies, but the efficiency is still far less than that of immunized mice or rats. Even with a greater understanding of the postimmunization kinetics of immune B-cell precursors in peripheral human blood (Callard et al., 1982; Butler et al.,1983; Astaldi et al., 1982), production of antibody-producing human hybridomas is still an uncommon event.

Keywords

Human Monoclonal Antibody Parent Cell Line Human Lymphoblastoid Cell Line Diphtheria Antitoxin Fusion Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, P. G., Knost, J. A., Clarke, G., Wilburn, S., Oldham, R. K., and Foon, K. A., 1983, Determination of the optimal human cell lines for development of human hybridomas, J. Immunol. 131: 1201–1204.PubMedGoogle Scholar
  2. Astaldi, G. C. B., Wright, E. P., Willems, C. H., Zeijlemaker, W. P., and Janssen, M. C., 1982, Increase of hybridoma formation by human lymphocytes after stimulation in vitro; effect of antigen, endothelial cells, and PWM, J. Immunol. 128: 2539–2542.PubMedGoogle Scholar
  3. Brown, N. A., and Miller, G., 1982, Immunoglobulin expression by human B lymphocytes clonally transformed by Epstein—Barr virus, J. Immunol. 128: 24–29.PubMedGoogle Scholar
  4. Buck, D. W., Larrick, J. W., Raubitschek, A., Truitt, K., Senyk, G., Wang, J., and Dyer, B. J., 1984, Production of human monoclonal antibodies, in: Monoclonal Antibodies and Functional Cell Lines ( R. H. Kennett, K. Bectol, and T. J. McKearn, eds.), Plenum Press, New York, pp. 275–309.CrossRefGoogle Scholar
  5. Butler, J. L., Lane, H. C., and Fauci, A. S., 1983, Delineation of optimal conditions for producing mouse/human heterohybridomas from human peripheral blood B cells of immunized subjects, J. Immunol. 130: 165–168.PubMedGoogle Scholar
  6. Buttin, G., Le Guern, G., Phalente, L., Lin, E. C. C., Medrano, L., and Cazenave, P. A., 1978, Production of hybrid lines secreting monoclonal anti-idiotypic antibodies by cell fusion on membrane filters, in: Lymphocyte Hybridomas ( F. Melchers, M. Potter, and N. L. Warner, eds.), Springer, Berlin, pp. 27–36.Google Scholar
  7. Callard, R. E., McCaughan, G. W., Babbage, J., and Souhami, R. L., 1982, Specific in vitro antibody responses by human blood lymphocytes: Apparent nonresponsiveness of PBL is due to a lack of recirculating memory B cells, J. Immunol. 129: 153–156.PubMedGoogle Scholar
  8. Chiorazzi, N., Wasserman, R. L., and Kunkel, H. G., 1982, Use of Epstein—Barr virus transformed B cell lines for the generation of immunoglobulin-producing human B cell hybridomas, J. Exp. Med. 156: 930–935.PubMedCrossRefGoogle Scholar
  9. Cram, L. S., Gomez, E. R., Thoen, C. O., Forslund, J. C., and Jett, J. H., 1976, Flow microfluorometric quantitation of the blastogenic response of lymphocytes, J. Histochem. Cytochem. 24: 383–387.Google Scholar
  10. Crawford, D. H., Callard, R. E., Muggeridge, M. I., Mitchell, D. M., Zanders, E. D., and Beverley, P. C. L., 1983, Production of human monoclonal antibody to X31 influenza virus nucleoprotein, J. Gen. Virol. 64: 697–700.Google Scholar
  11. Croce, C. M., Shander, M., Martinis, J., Cicurel, L., D’Anlona, G. G., Dolley, T. W., and Koprowski, H., 1980, Preferential retention of human chromosome 14 in mouse x human B cell hybrids, Eur. J. Immunol. 10: 486–488.CrossRefGoogle Scholar
  12. Dangl, J. L., Parks, D. R., Oi, V. T., and Herzenberg, L. A., 1982. Rapid isolation of cloned isotype switch variants using fluorescence-activated cell sorting, Cytometry 6: 395–401.Google Scholar
  13. Diamond, L. W., and Braylan, R. C., 1980, Flow analysis of DNA content and cell size in non-Hodgkin’s lymphoma, Cancer Res. 40: 703–712.PubMedGoogle Scholar
  14. Erikson, J., Martinis, J., and Croce, C. M., 1981, Assignment of the genes for human X immunoglobulin chains to chromosome 22, Nature 294: 173–175.PubMedCrossRefGoogle Scholar
  15. Foung, S. K. H., Perkins, S., Raubitschek, A., Larrick, J., Lizak, G., Fishwild, D., Engleman, E. G., and Grumet, F. C., 1984, Rescue of human monoclonal antibody production from an EBVtransformed B cell line by fusion to a human/mouse hybridoma, J. Immunol. Meth. 70: 83–90.CrossRefGoogle Scholar
  16. Gazitt, Y., Deitch, A. D., Marks, P. A., and Rifkind, R. A., 1978, Cell volume changes in relation to the cell cycle of differentiating erythroleukemic cells, Exp. Cell Res. 117: 413–420.CrossRefGoogle Scholar
  17. Glassy, M. C., Handley, H. H., Hagiwara, H., and Royston, I., 1983, UC-729–6, a human lymphoblastoid B-cell line useful for generating antibody-secreting human/human hybridomas, Proc. Natl. Acad. Sci. USA 80: 6327–6331.PubMedCrossRefGoogle Scholar
  18. Gronowicz, E., Coutinho, A., and Melchers, F., 1976, A plaque assay for all cells secreting Ig of a given type or class, Eur. J. Immunol. 6: 588–590.PubMedCrossRefGoogle Scholar
  19. Hoffmann, M. K., 1980, Antigen-specific induction and regulation of antibody synthesis in cultures of human peripheral blood mononuclear cells, Proc. Natl. Acad. Sci. USA 77: 1139 1143.Google Scholar
  20. Irie, R. F., Sze, L. L., and Saxton, R. E., 1982, Human antibody to OFA-1, a tumor antigen, produced in vitro by Epstein—Barr virus-transformed human B-lymphoid cell lines, Proc. Natl. Acad. Sci. USA 79: 5666–5670.PubMedCrossRefGoogle Scholar
  21. Kozbor, D., and Roder, J. C., 1981, Requirements for the establishment of high-titred human monoclonal antibodies against tetanus toxoid using the Epstein—Barr virus technique, J. Immunol. 127: 1275–1280.PubMedGoogle Scholar
  22. Kozbor, D., and Roder, J. C., 1984, In vitro stimulated lymphocytes as a source of human hybridomas, Eur. J. Immunol. 14: 23–27.Google Scholar
  23. Kozbor, D., and Roder, J. C., 1983b, The production of monoclonal antibodies from human lymphocytes, Immunol. Today 4: 72–79.CrossRefGoogle Scholar
  24. Kozbor, D., Steinitz, M., Klein, G., Koskimies, S., and Makela, 0., 1979, Establishment of anti-TNP antibody-producing human lymphoid lines by preselection for hapten binding followed by EBV transformation, Scand. J. Immunol. 10: 187–194.PubMedCrossRefGoogle Scholar
  25. Kozbor, D., Lagarde, A. E., and Roder, J. C., 1982a, Human hybridomas constructed with antigen-specific EBV transformed lines, Proc. Natl. Acad. Sci. USA 79: 6651–6655.PubMedCrossRefGoogle Scholar
  26. Kozbor, D., Roder, J. C., Chang, T. H., Steplewski, Z., and Koprowski, II., 1982b, Human anti-tetanus toxoid monoclonal antibody secreted by EBV-transformed human B cells fused with murine myeloma, Hybridoma 1: 323–328.PubMedCrossRefGoogle Scholar
  27. Kozbor, D., Dexter, D., and Roder, J. C., 1983, A comparative analysis of the phenotypic characteristics of available fusion partners for the construction of human hybridomas, Hybridoma 2: 7–16.PubMedCrossRefGoogle Scholar
  28. Lane, H. C., Shelhamer, J. H., Mostowski, H. S., and Fauci, A. S., 1982, Human monoclonal antiKLH antibody-secreting hybridoma produced from peripheral blood B lymphocytes of a KLH-immune individual, J. Exp. Med. 155: 333–338.PubMedCrossRefGoogle Scholar
  29. Larrick, J. W., Truitt, K. E., Raubitschek, A. A., Senyk, G. S., Wang, J. C. N., 1983, Characterization of human hybridomas secreting antibody to tetanus toxoid, Proc. Natl. Acad. Sci. USA 80: 6376–6380.PubMedCrossRefGoogle Scholar
  30. Loken, M. (2., and Stall, A. M., 1982, Flow cytometry as an analytical and preparative tool in immunology, J. Immunol. Meth. 50: R85 — R112.Google Scholar
  31. Madsen, M., and Johnsen, H. E., 1979, A methodological study of E-rosette formation using AET-treated sheep red blood cells, J. Immunol. Meth. 27: 61–74.CrossRefGoogle Scholar
  32. Mishell, R. I., and Dutton, R. W., 1967, Immunization of dissociated spleen cell cultures from normal mice, J. Exp. Med. 126: 423–442.PubMedCrossRefGoogle Scholar
  33. Moss, R., Milgrom, H., Lewiston, N., Kurd, J., Shu, Y., Dyer, B. J., Hart, S. M., and Larrick, J. W., 1984, Prognostic significance of circulating immune complexes, plasma complement activation and serum IgG antibodies to Pseudomonas LPS and exotoxin A in cystic fibrosis, Amer. Rev. Resp. Dis., submitted.Google Scholar
  34. Olsson, L., Kronstrom, H., Cambon-de Mouzon, A., Honsik, C., Brodin, T., and Jakobsen, B., 1983, Antibody producing human/human hybridomas, I. Technical Aspects, J. Immunol. Meth. 61: 17–32.CrossRefGoogle Scholar
  35. Olsson, L., Kronstrom, H., Cambon-de Mouzon, A., Honsik, C., Brodin, T., and Jakobsen, B., 1983, Antibody producing human/human hybridomas, I. Technical Aspects, J. Immunol. Meth. 61: 17–32.CrossRefGoogle Scholar
  36. Shulman, M., Wilde, C. D., and Köhler, G., 1978, A better cell line for making hybridomas secreting specific antibodies, Nature 276: 269–270.PubMedCrossRefGoogle Scholar
  37. Steinitz, M., Klein, G., Koskimies, S., and Makela, 0., 1977, EB virus-induced B lymphocyte cell lines producing specific antibody, Nature 269: 420–422.PubMedCrossRefGoogle Scholar
  38. Steinitz, M., Koskimies, S., Klein, G., and Makela, 0., 1978, Establishment of specific antibody producing human lines by antigen preselection and Epstein—Barr virus (EBV) transformation, Curr. Top. Microbiol. Immunol. 81: 156–163.PubMedGoogle Scholar
  39. Teng, N. N. H., Lam, K. S., Riera, F. C., and Kaplan, H. S., 1983, Construction and testing of mouse/human heteromyelomas for human monoclonal antibody production, Proc. Natl. Acad. Sci. USA 80: 7308–7312.PubMedCrossRefGoogle Scholar
  40. Truitt, K. E., Larrick, J. W., and Raubitschek, A., 1984, Fusion of nonadherent human cell lines, in: Monoclonal Antibodies and Functional Cell Lines ( R. H. Kennett, K. B. Bechtol, and T. J. McKean, eds.), Plenum Press, New York, pp. 371–373.Google Scholar
  41. Tsuchiya, S., Yokoyama, S., Yoshie, 0., and Ono, Y., 1980, Production of diphtheria antitoxin antibody in Epstein—Barr virus induced lymphoblastoid cell lines, J. Immunol. 124: 1970 1976.Google Scholar
  42. Winger, L., Winger, C., Shastry, P., Russell, A., and Longenecker, M., 1983, Efficient generation in vitro, from human peripheral blood cells, of monoclonal Epstein—Barr virus transformants producing specific antibody to a variety of antigens without prior deliberate immunization, Proc. Natl. Acad. Sci. USA 80: 4484 4488.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • James W. Larrick
    • 1
  • Bradley J. Dyer
    • 1
  • George Senyk
    • 1
  • Sarah M. Hart
    • 1
  • Richard Moss
    • 2
  • David Lippman
    • 1
  • Mark C. Jahnsen
    • 1
  • Janet Wang
    • 1
  • Howard Weintraub
    • 1
  • Andrew A. Raubitschek
    • 1
  1. 1.Cetus Immune Research LaboratoriesPalo AltoUSA
  2. 2.Children’s Hospital at StanfordPalo AltoUSA

Personalised recommendations