Advertisement

Production of Human Monoclonal Antibodies Using a Human-Mouse Fusion Partner

  • Steven K. H. Foung
  • Susan Perkins
  • Jeffrey Lifson
  • Nahid Mohagheghpour
  • Dianne Fishwild
  • F. Carl Grumet
  • Edgar G. Engleman
  • Ann Arvin

Abstract

In man, the use of antigen-specific antibodies is an important clinical tool for diagnostic testing (e.g., blood typing for transfusion, tissue typing for transplantation) and for therapy (e.g., prophylaxis of Rh hemolytic disease of the newborn and zoster immune plasma) (Yankee et al., 1969; Grumet et al., 1982; Davey and Zipursky, 1979; Ross, 1962; Zaia et al., 1983). The limited availability or specificity of many of these reagents has placed an important restraint on their use. The production of hybrids between myeloma cell lines and lymphocytes from immunized hosts appears to make possible the unlimited production of monoclonal antibodies to predefined antigens (Köhler and Milstein, 1975). Successful application of this technique, primarily with rodents, is of limited clinical use because xenogeneic immunization with human cells mainly yields antibodies against monomorphic, species-specific antigens rather than polymorphic alloantigens. Moreover, rodent hybridomas have a theoretical limitation for therapeutic use because their secreted antibody would be treated by human recipients as a foreign protein with potential for inducing serum sickness.

Keywords

Herpes Zoster Varicella Zoster Virus Human Monoclonal Antibody Human Lymphoblastoid Cell Line Microtiter Tray 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arvin, A. M., and Koropchak, C. M., 1980, Immunoglobulins M and G to varicella-zoster virus measured by solid-phase radioimmunoassay: Antibody responses to varicella and herpes zoster infections, J. Clin. Microbial. 12:367.Google Scholar
  2. Atkinson, K., Meyers J. D., Storb, R., Prentice, L., and Thomas, E, D., 1980, Varicella-zoster virus infection after marrow transplantation for aplastic anemia or leukemia, Transplantation 29:47.PubMedCrossRefGoogle Scholar
  3. Brodsky, F. M., Parham, P., Barnstable, C. J., Crumpton, M. J., and Bodmer, W. F., 1979, Monoclonal antibodies for analysis of the HLA system, Immunol. Rev. 47:3.PubMedCrossRefGoogle Scholar
  4. Croce, C. M., Linnenbach, A., Hall, W., Steplewski, Z., and Koprowski, H., 1980, Production of human hybridomas secreting antibodies to measles virus, Nature 288:488.PubMedCrossRefGoogle Scholar
  5. Davey, M. G., and Zipursky, A., 1979, McMaster Conference in Prevention of Rh Immunization, Vox Sang. 36:50.CrossRefGoogle Scholar
  6. De-The, G., 1982, Epidemiology of Epstein-Barr virus and associated diseases in man, In: The Herpesviruses, Volume 1, B. Roizman, ed., Plenum Press, New York, p. 25.CrossRefGoogle Scholar
  7. Feldman, S., Hughes, W. T., and Daniel, C. B., 1975, Varicella in children with cancer: Seventy-seven cases, Pediatrics 56:388.PubMedGoogle Scholar
  8. Foung, S. K. H., Sasaki, D., Grumet, F. C., and Engleman, E. G., 1982, Production of functional human T-T hybridomas in selection medium lacking aminopterin and thymidine, Proc. Natl. Acad. Sci. USA 79:7484.PubMedCrossRefGoogle Scholar
  9. Foung, S. K. H., Perkins, S., Raubitschek, A., Larrick, J., Lizak, G., Fishwild, D., Engleman, E. G., and Grumet, F. C. 1984, Rescue of human monoclonal antibody production from an EBV transformed B cell line by fusion to a human—mouse hybridoma, J. Immunol. Meth. 70:83.CrossRefGoogle Scholar
  10. Grose, C., Edmond, B. J., and Brunell, P. A., 1979, Complement enhanced neutralizing antibody response to varicella-zoster virus, J. Infect. Dis. 139:432.PubMedCrossRefGoogle Scholar
  11. Grose, C., Edwards, D. P., Friedrichs, W. E., Weigle, K. A., and McGuire, W. L., 1983, Monoclonal antibodies against three major glycoproteins of varicella-zoster virus, Infect. Immunol. 40:381.Google Scholar
  12. Grose, C., Edwards, D. P., Weigle, K. A., Friedrichs, W. E., and McGuire, W. L., 1984, Varicella-zoster virus-specific gp 140: A highly immunogenic and disulfide-linked structural glycoprotein, Virology 132:138.PubMedCrossRefGoogle Scholar
  13. Grumet, F. C., Fendly, B. M., Fish, L., Foung, S., and Engleman, E. G., 1982, A monoclonal antibody (B27M2) subdividing HLA-B27, Hum. Immunol. 5:61.PubMedCrossRefGoogle Scholar
  14. Henle, W., and Henle, G., 1982, Immunology of Epstein-Barr virus, In: The Herpesviruses, Volume 1, B. Roizman, ed., Plenum Press, New York, p. 209.CrossRefGoogle Scholar
  15. Hunter, S. W., Fujiwara, T., and Brennan, P. J., 1982, Structure and antigenicity of the major specific glycolipid antigen of Mycobacterium leprae,J. Biol. Chem. 257:15072.PubMedGoogle Scholar
  16. Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256:495.PubMedCrossRefGoogle Scholar
  17. Lane, H. C., Shelhomer, J. H., Mostowski, H. S., and Fauci, A. S., 1982, Human monoclonal anti-keyhole limpet hemocyanin antibody-secreting hybridoma produced from peripheral blood B lymphocytes of a keyhole limpet hemocyanin-immune individual, J. Exp. Med. 155:333.PubMedCrossRefGoogle Scholar
  18. Meyers, J. D., Flournoy, N., and Thomas, E. D., 1980, Cell-mediated immunity to varicella-zoster virus after allogeneic marrow transplant, J. Infect. Dis. 141:479.PubMedCrossRefGoogle Scholar
  19. Nowinski, R., Boglund, C., Lane, J., Lastrum, M., Bernstein, I., Young, W., Hakomori, S., Hall, L., and Cooney, M., 1980, Production of antibody to tetanus toxoid by continuous human lymphoblastoid cell lines, Science 199:1439.Google Scholar
  20. Olsson, L., and Kaplan, H. S., 1980, Human-human hybrids producing monoclonal antibodies of predefined antigenic specificity, Proc. Natl. Acad. Sci. USA 77:5429.PubMedCrossRefGoogle Scholar
  21. Parker, J., Marcoux, D. A., Hafleigh, E. B., and Grumet, F. C., 1978, Modified microtiter tray method for blood typing, Transfusion 18:417.PubMedCrossRefGoogle Scholar
  22. Ross, A. H., 1962, Modification of chickenpox in family contacts by administration of gamma globulin, N. Engl. J. Med. 267:369.PubMedCrossRefGoogle Scholar
  23. Schlom, J., Wunderlich, D., and Teramoto, Y. A., 1980, Generation of human monoclonal antibodies reactive with human mammary carcinoma cells, Proc. Natl. Acad. Sci. USA 77:6841.PubMedCrossRefGoogle Scholar
  24. Sly, W. S., Sekhon, G. S., Kennett, R., Bodmer, W. F., and Bodmer, J., 1976, Permanent lymphoid lines from genetically marked lymphocytes: Success with lymphocytes recovered from frozen storage, Tiss. Antigens 7:165.CrossRefGoogle Scholar
  25. Steinitz, M., Klein, G., Koskimies, S., and Makela, O., 1977, EB virus-induced B lymphocyte cell lines producing specific antibodies, Nature 269:420.PubMedCrossRefGoogle Scholar
  26. Takahashi, M., Otsuka, T., Okuno, Y., Asano, Y., Yazaki, T., and Isomura, S., 1974, Live vaccine used to prevent the spread of varicella in children in hospital, Lancet 2:1288.PubMedCrossRefGoogle Scholar
  27. Tamura, G. S., Dailey, M. O., Gallatin, W.M., McGrath, M. S., Weissman, I. L., and Pillemer, E. A., 1984, Isolation of molecules recognized by monoclonal antibodies and antisera: The solid phase immunoisolation technique, Anal. Biochem. 136:458.PubMedCrossRefGoogle Scholar
  28. Watson, J. G., 1983, Problems of infection after bone marrow transplantation, J. Clin. Pathol. 36:683.PubMedCrossRefGoogle Scholar
  29. Weller, T. H., 1983, Varicella and herpes zoster, N. Engl. J. Med. 309:1362.PubMedCrossRefGoogle Scholar
  30. Yankee, R. A., Grumet, F. C., and Rogentine, G. N., 1969. The selection of compatible platelet donors for refractory patients by lymphocyte HLA typing, N. Engl. J. Med. 281:1208.PubMedCrossRefGoogle Scholar
  31. Zaia, J. A., Levin, M. J., Preblud, S. R., Leszczynski, J., Wright, G. G., LeGore, J., Ellis, R. J., Curtis, A. C., and Valerio, M.A., 1983. Evaluation of varicella-zoster immune globulin: Protection of immunosuppressed children after household exposure to varicella, J. Infect. Dis. 147:737.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Steven K. H. Foung
    • 1
  • Susan Perkins
    • 1
  • Jeffrey Lifson
    • 1
  • Nahid Mohagheghpour
    • 1
  • Dianne Fishwild
    • 1
  • F. Carl Grumet
    • 1
  • Edgar G. Engleman
    • 1
  • Ann Arvin
    • 2
  1. 1.Department of Pathology, Stanford University School of MedicineStanford University Medical CenterStanfordUSA
  2. 2.Department of Pediatrics, Stanford University School of MedicineStanford University Medical CenterStanfordUSA

Personalised recommendations