Production and Characterization of Human Monoclonal Antibodies against Gram-Negative Bacteria

  • Warren C. BogardJr.
  • Elizabeth Hornberger
  • Patrick C. Kung


In the last 20 years, Gram-negative bacteria have become the leading agents of fatal bacterial infections in hospital patients. Each year nosocomial bacteremia develops in approximately 194,000 people in the U.S.; of these about 75,000 die (Maki, 1981). This high frequency of mortality occurs despite the aggressive use of potent antibiotics. The shortcomings of antibiotic therapy may be attributed to the relative impermeability of the outer membrane of Gram-negative bacteria to the drugs and to their inability to counteract or neutralize the lethal effects of bacterial endotoxins (Ziegler et al., 1982). Chemically, the toxiphore of endotoxin is lipopolysaccharide (LPS). They have great structural diversity and are unique to Gram-negative bacteria. LPS is usually composed of three structural regions: the O-specific carbohydrate, the core, and the lipid A (Luderitz et al., 1982). The O-specific chain is typically very immunogenic and structurally heterogeneous from strain to strain. The core and lipid A portions of LPS, however, share similar structures among various strains of Gram-negative bacteria. This is particularly true in the core-lipid A junction, which almost always contains phosphate, 2-keto-3-deoxy-d-manno-octonate (KDO), and d-glucosamine (Fig. 1).


Human Monoclonal Antibody Human MABS Murine Antibody Gentamycin Sulfate Immune Spleen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, P. G., Knost J. A., Clarke, G., Wilburn, S., Oldham, R. K., and Foon, K. A., 1983, Determination of the optimal human cell lines for development of human hybridomas, J. Immunol. 131 (3): 1201–1204.PubMedGoogle Scholar
  2. Bogard, W. C., Jr., Abernethy, K., Dunn, D. L., and Kung, P. C., 1984, Murine monoclonal antibodies against Gram-negative bacterial core-glycolipid: Criteria for cross-genera reactivity, Fed. Proc. 43: 1682 (abstr.).Google Scholar
  3. Braude, A. I., and Douglas, H., 1972, Passive immunization against the local Shwartzman reaction, J. Immunol. 108 (2): 505–512.PubMedGoogle Scholar
  4. Braude, A. I., Ziegler, E. J., Douglas, H., and McCutchan, J. A., 1977, Antibody to cell wall glycolipid of Gram-negative bacteria: Induction of immunity to bacteremia and endotoxernia, J. Infect. Dis. 136: S167 - S173.PubMedCrossRefGoogle Scholar
  5. Cosimi, A. B., Colvin, R. B., Burton, R. C., Goldstein, G., Kung, P., Massen, P., Delmonico, F., and Russell, F., 1981, Use of monoclonal antibodies to T cell subsets for immunologic monitoring and treatment in recipients of renal allographs, N. Engl. J. Med. 305: 308–314.PubMedCrossRefGoogle Scholar
  6. Crawford, D. H., Harrison, J. F., Barlow, M. J., Winger, L., and Huehns, E. R., 1983, Production of human monoclonal antibodies to rhesus D antigen, Lancet 19: 386–388.CrossRefGoogle Scholar
  7. Croce, C. M., Linnenbach, A., Hall, W., Steplewski, Z., and Koprowski, H., 1980, Production of human hybridomas secreting antibodies to measles virus, Nature 288: 488–489.PubMedCrossRefGoogle Scholar
  8. Darveau, R. P., and Hancock, R. E. W., 1983, Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains, J. Bacteriol. 155 (2): 831–838.PubMedGoogle Scholar
  9. Dunn, D. L., and Ferguson, R. M., 1982, Immunotherapy of Gram-negative bacterial sepsis: Enhanced survival in a guinea pig model by use of rabbit antiserum to Escherichia coli J5, Surgery 92 (2): 212–219.PubMedGoogle Scholar
  10. Giovanella, B. C., Stehlin, J. S., Williams, L. J., Lee, S., and Shepard, R. C., 1978, Hetero-transplantation of human cancers into nude mice: A model system for human cancer chemotherapy, Cancer 42: 2269–2281.PubMedCrossRefGoogle Scholar
  11. Herlyn, D. M., Steplewski, Z., Herlyn, M. F., and Koprowski, H., 1980, Inhibition of growth of colorectal carcinoma in nude mice by monoclonal antibody, Cancer Res. 40: 717–721.PubMedGoogle Scholar
  12. Hoffman, M., 1980, Antigen-specific induction and regulation of antibody synthesis in cultures of human peripheral blood mononuclear cells, Proc. Natl. Acad. Sci. USA 77: 1139–1143.CrossRefGoogle Scholar
  13. Hunter, K. W., Fischer, G. W., Hemming, V. G., Wilson, S. R., Hartzman, R. J., and Woody, J. N., 1982, Antibacterial activity of a human monoclonal antibody to Haemophilus influenzae type b capsular polysaccharide, Lancet 2: 798.PubMedCrossRefGoogle Scholar
  14. Koprowski, H., Herlyn, D., Lubeck, M., DeFreitas, E., and Sears, H. F., 1984, Human antiidiotype antibodies in cancer patients: Is the modulation of the immune response beneficial for the patient? Proc. Natl. Acad. Sci. USA 82: 216–219.CrossRefGoogle Scholar
  15. Kozbor, D., and Roder, J. C., 1981, Requirements for the establishment of high-titered human monoclonal antibodies against tetanus toxoid using the Epstein—Barr virus technique, J. Immunol. 127 (4): 1275–1280.PubMedGoogle Scholar
  16. Kozbor, D., and Roder, J. C., 1983, The production of monoclonal antibodies from human lymphocytes, Immunol. Today 4 (3): 72–79.CrossRefGoogle Scholar
  17. Lachman, E., Pitsoe, S. B., and Gaffin, S. L., 1984, Anti-lipopolysaccharide immunotherapy in management of septic shock of obstetric and gynaecological origin, Lancet 1984: 981–983.CrossRefGoogle Scholar
  18. Larrick, J. W., Truitt, K. E., Raubitschek, A. A., Senyk, G., and Wang, J. C. N., 1983, Characterization of human hybridomas secreting antibody to tetanus toxoid, Proc. Natl. Acad. Sci. USA 80: 6376–6380.PubMedCrossRefGoogle Scholar
  19. Luderitz, O., Freudenberg, M. A., Galanos, C., Lehmann, V., Rietschel, E. T., and Shaw, D. H., 1982, Lipopolysaccharides of Gram-negative bacteria, in: Current Topics in Membranes and Transport, Volume 17, Academic Press, New York, pp. 79–151.Google Scholar
  20. Maki, D. G., 1981, Nosocomial bacteremia: An epidemiologic overview, in: Nosocomial Infections (R. E. Dixon, ed. ), Yorke Medical Book, pp. 183–196.Google Scholar
  21. McCabe, W. R., 1972, Immunization with R mutants of S. minnesota. I. Protection against challenge with heterologous Gram-negative bacilli, J. Immunol. 108: 601–610.PubMedGoogle Scholar
  22. McCabe, W. R., Bruins, S. C., Craven, D. E., and Johns, M., 1977, Cross-reactive antigens: Their potential for immunization-induced immunity to Gram-negative bacteria, J. Infect. Dis 136 (Suppl.):S 161 - S166.CrossRefGoogle Scholar
  23. Miller, R. A., and Levy, R., 1981, Response of cutaneous T cell lymphoma to therapy with hybridoma monoclonal antibody, Lancet 2: 226–230.PubMedCrossRefGoogle Scholar
  24. Mutharia, L. M., Crockford, G., Bogard, W. C., Jr., and Hancock, R. E. W., 1984, Monoclonal antibodies specific for Escherichia coli J5 lipopolysaccharide: Cross-reaction with other gram-negative bacterial species, Infect. Immun., 45: 631–636.PubMedGoogle Scholar
  25. Noeman, S. A., Misra, D. N., Yankes, R. J., Kunz, H. W., and Gill, T. J., 1982, Growth of rat—mouse hybridomas in nude mice and nude rats, J. Immunol. Meth. 55: 319–326.CrossRefGoogle Scholar
  26. Ollson, L., and Kaplan, H. S., 1980, Human—human hybridomas producing monoclonal anti- bodies of predefined antigenic specificity, Proc. Natl. Acad. Sci. USA 77 (9): 5429–5431.CrossRefGoogle Scholar
  27. Sedlacek, R. S., Orcutt, R. P., Suit, H. D., and Rose, E. F., 1981, A flexible barrier at cage level for existing colonies: Production and maintenance of a limited stable anaerobic flora in a closed inbred mouse colony, in: Recent Advances in Germfree Research ( S. Sasaki, A. Ozawa, and K. Hashimota, eds.), Tokai University Press of Japan, Tokyo, pp. 65–69.Google Scholar
  28. Strike, L. E., Murray, S. A., Fletcher W. H., and Lundak, R. L., 1982, Evaluation of immunoglobulin-secreting human—human hybridomas by scanning electron microscopy, Fed. Proc. 41: 594.Google Scholar
  29. Strike, L. E., Devens, B. H., and Lundak, R. L., 1984, Production of human—human hybridomas secreting antibody to sheep erythrocytes after in vitro immunization, J. Immunol. 132 (4): 1798–1803.PubMedGoogle Scholar
  30. Tate, W. J., Douglas, H., and Braude, A. I., 1966, Protection against lethality of E. coli endotoxin with “O” antiserum, Ann. N.Y. Acad. Sci. 133: 746–762.PubMedCrossRefGoogle Scholar
  31. Teng, N. N. H., Lam K. S., Riera F. C., and Kaplan, H. S., 1983, Construction and testing of mouse—human heteromyelomas for human monoclonal antibody production, Proc. Natl. Acad. Sci. USA 80: 7308–7312.PubMedCrossRefGoogle Scholar
  32. Tsai, C.-M., and Frasch, C. E., 1982, A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels, Anal. Biochem. 119: 115–119.PubMedCrossRefGoogle Scholar
  33. Ziegler, E. J., Douglas, H., Sherman, J. E., Davis, C. E., and Braude, A. I., 1973, Treatment of E. coli and Klebsiella bacteremia in agranulocytic animals with antiserum to a UDP-Gal epimerase-deficient mutant, J. lmmunol. 111 (2): 433–438.Google Scholar
  34. Ziegler, E. J., McCutchan, J. A., Fierer, J., Glauser, M. P., Sadoff, J. C., Douglas, H., and Braude, A. I., 1982, Treatment of Gram-negative bacteremia and shock with human antiserum to a mutant Escherichia coli, N. Engl. J. Med. 307 (20): 1225–1267.PubMedCrossRefGoogle Scholar

Neuraminidase Rosetting

  1. Weinger, M. D. S., Bianco, C., and Nussenzweig, V., 1973, Enhanced binding of neuraminidasetreated sheep erythrocytes to human T lymphocytes, Blood 42: 939–946.Google Scholar

AET Rosetting

  1. Madsen, M., and Johnson, H. E., 1979, A methodological study of E-rosette formation using AET-treated sheep red blood cells, J. Immunol. Meth. 27: 61–74.CrossRefGoogle Scholar
  2. Saxon, A., Feldhaus, J., and Robins, R. A., 1976, Single step separation of human T and B cells using AET treated sheep red cells, J. Immunol. Meth. 12: 285–289.CrossRefGoogle Scholar

Abs FCS Rosetting

  1. Gmelig-Meyling, F., and Ballieux, R. E., 1977, Simplified procedure for the separation of human T and non-T cells, Vox Sang. 33: 5–8.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Warren C. BogardJr.
    • 1
  • Elizabeth Hornberger
    • 1
  • Patrick C. Kung
    • 1
  1. 1.CentocorMalvernUSA

Personalised recommendations