The Epstein—Barr Virus-Hybridoma Technique

  • John C. Roder
  • Susan P. C. Cole
  • Tsehay Atlaw
  • Barbara G. Campling
  • Ronald C. McGarry
  • Danuta Kozbor


Several years before the application of Köhler and Milstein’s (1975) hybridoma technology to the production of human monoclonal antibodies, human lymphoid lines producing antibody with defined antigenic specificity were established by Epstein-Barr virus (EBV) “immortalization” (Steinitz et al., 1977). EBV is a lymphotropic herpes virus, which transforms normal B lymphocytes and makes it possible to culture these cells as permanent lines. Rosen et al. (1977) demonstrated that direct infection of purified human blood lymphocytes with EBV in vitro induced polyclonal secretion of immunoglobulins. Culture supernatants assayed by immunoassay contained a heterogeneous assortment of immunoglobulin isotypes and antibodies specific for various randomly selected antigens. It became obvious, then, that if monospecific B cells could be transformed in vitro into continuous cell lines by EBV and if these “immortalized” cells could be triggered to produce antibodies, permanent lines of B lymphocytes might be established that were capable of producing specific monoclonal antibodies against any appropriate antigen.


Human Monoclonal Antibody Tetanus Toxoid Fusion Partner Lepromatous Leprosy Human Lymphoblastoid Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atlaw, T., Kozbor, D., and Roder, J. C., 1985, Human monoclonal antibodies against Mycobacterium Leprae, Infect. Immun.,in press.Google Scholar
  2. Boylston, A. W., Gardner, B., Anderson, R. L., and Hughes-Jones, N. C., 1980, Production of human IgM anti-D in tissue culture by EB-virus transformed lymphocytes, Scand. J. Immunol. 12: 355–358.PubMedCrossRefGoogle Scholar
  3. Chiorazzi, N., Wasserman, R. L., and Kunkel, H. G., 1982, Use of Epstein—Barr virus-transformed B cell lines for the generation of immunoglobulin-producing human B cell hybridomas, J. Exp. Med. 156: 930–935.PubMedCrossRefGoogle Scholar
  4. Cole, S. P. C., Campling, B. G., Atlaw, T., Kozbor, D., and Roder, J. C., 1984a, Human monoclonal antibodies, Mol. Cell. Biol., 62: 109–120.Google Scholar
  5. Cole, S. P. C., Campling, B. G., Louwman, I. H., Kozbor, D., and Roder, J. C., 1984b, A strategy for the production of human monoclonal antibodies reactive with lung tumour cell lines, Cancer Res., 44: 2750–2753.PubMedGoogle Scholar
  6. Crawford, D. H., Barlow, M.J., Harrison, J. F., Winger, L., and Huehns, E. R., 1983a, ProductionGoogle Scholar
  7. Crawford, D. H., Callard, R. E., Muggeridge, M. I., Mitchell, D. M., Zanders, E. D., and Beverley, P. C. L., 1983b, Production of human monoclonal antibody to X31 influenza virus nucleoprotein, J. Gen. Virol. 64: 697–700.PubMedCrossRefGoogle Scholar
  8. Crawford, D. H., Heuhns, E. R., and Epstein, M. A., 1983c, Therapeutic use of human monoclonal antibodies, Lancet i:1040 (letter).Google Scholar
  9. Croce, C. M., Linnenbach, A., Hall, W., Steplewski, Z., and Koprowski, H., 1980, Production of human hybridomas secreting antibodies to measles virus, Nature 288: 488.PubMedCrossRefGoogle Scholar
  10. Dillman, R. O., Shawler, D. L., Sobol, R. E., Collins, H. A., Beauregard, J. C., Wormsley, S. B., and Royston, I., 1982, Murine monoclonal antibody therapy in two patients with chronic lymphocytic leukemia, Blood 59: 1036–1045.PubMedGoogle Scholar
  11. Irie, R. F., Sze, L. L., and Saxton, R. E., 1982, Human antibody to OFA-1, a tumor antigen produced in vitro by Epstein-Barr virus-transformed human B-lymphoid cell lines, Proc. Natl. Acad. Sci. USA 79: 5666–5670.PubMedCrossRefGoogle Scholar
  12. Kamo, I., Furukawa, S., Tada, A., Mano, Y., Iwasaki, Y., and Furuse, T., 1982, Monoclonal antibody to acetylcholine receptor: Cell line established from thymus of patient with myasthenia gravis, Science 215: 995–997.PubMedCrossRefGoogle Scholar
  13. Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256: 495–497.PubMedCrossRefGoogle Scholar
  14. Koskimies, S., 1979, A human lymphoblastoid cell line producing specific antibody against Rh-antigen D, Scand. J. Immunol. 10: 371 (abstract).Google Scholar
  15. Kozbor, D., and Roder, J. C., 1981, Requirements for the establishment of high titered human monoclonal antibodies against tetanus toxoid using the Epstein—Barr virus technique, J. Immunol. 127: 1275–1280.PubMedGoogle Scholar
  16. Kozbor, D., and Roder, J. C., 1983, Monoclonal antibodies produced by human lymphocytes, Immunol. Today 4: 72–79.CrossRefGoogle Scholar
  17. Kozbor, D., and Roder, J., 1984, In vitro stimulated lymphocytes as a source of human hybridomas, Eur. J. Immunol., 14: 23–27.Google Scholar
  18. Kozbor, D., Steinitz, M., Klein, G., Koskimies, S., and Makela, O., 1979, Establishment of anti-TNP antibody-producing human lymphoid lines by preselection for hapten binding followed by EBV transformation, Scand. J. Immunol. 10: 187–194.PubMedCrossRefGoogle Scholar
  19. Kozbor, D., Roder, J. C., Chang, T. H., Steplewski, Z., and Koprowski, H., 1982a, Human anti-tetanus toxoid monoclonal antibody secreted by EBV-transformed human B cells fused with a murine myeloma, Hybridoma 1: 323–328.PubMedCrossRefGoogle Scholar
  20. Kozbor, D., Lagarde, A., and Roder, J. C., 1982b, Human hybridomas constructed with antigen-specific, EBV-transformed cell lines, Proc. Natl. Acad. Sci. USA 79: 6651–6655.PubMedCrossRefGoogle Scholar
  21. Kozbor, D., Dexter, D., and Roder, J. C., 1983, A comparative analysis of the phenotypic characteristics of available fusion partners for the construction of human hybridomas, Hybridoma 2: 7–16.PubMedCrossRefGoogle Scholar
  22. Kozbor, D., Tripputi, P., Roder, J. C., and Croce, C. M., 1984, A human hybrid myeloma is an efficient fusion partner that enhances monoclonal antibody production, J. Immunol. 133: 3001–3005.PubMedGoogle Scholar
  23. Laskov, R., Kim, J. K., and Asofsky, R., 1979, Induction of amplified synthesis and secretion of IgM by fusion of murine B lymphoma with myeloma cells, Proc. Natl. Acad. Sci. USA 76: 915–919.PubMedCrossRefGoogle Scholar
  24. Levy, R., and Dilley, J., 1978, Rescue of immunoglobulin secretion from human neoplastic lymphoid cells by somatic cell hybridization, Proc. Natl. Acad. Sci. USA 75: 2411–2415.PubMedCrossRefGoogle Scholar
  25. McGarry, R., Cole, S. P. C., and Roder, J., 1985, Human hybridomas from patients with peripheral demyelination react with myelin-associated glycoprotein, manuscript in preparation.Google Scholar
  26. Miller, G., and Lipman, M., 1973, Release of infectious Epstein-Barr virus by transformed marmoset leukocytes, Proc. Natl. Acad. Sci. USA 70: 190–194.PubMedCrossRefGoogle Scholar
  27. Miller, R. A., and Levy, R., 1981, Response of cutaneous T-cell lymphoma to therapy with hybridoma monoclonal antibody, Lancet 2: 226–230.PubMedCrossRefGoogle Scholar
  28. Miller, R. A., Maloney, D. G., McKillop, J., and Levy, R., 1981, In vivo effects of murine hybridoma monoclonal antibody in a patient with T-cell leukemia, Blood 58: 78–86.Google Scholar
  29. Miller, R. A., Maloney, D. G., Warnke, R., and Levy, R., 1982, Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody, N. Engl. J. Med. 306: 517–522.PubMedCrossRefGoogle Scholar
  30. Milstein, C., and Cuello, A. C., 1983, Hybrid hybridomas and their use in immunohistochemistry, Nature 305: 537–540.PubMedCrossRefGoogle Scholar
  31. Miyoshi, I., Kubonishi, E., Yoshimoto, S., Akagi, T., Ohtsuki, Y., Shiraishr, Y., Nagata, K., and Hinuma, Y., 1981, Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and leukemia T cells, Nature 294: 770–771.PubMedCrossRefGoogle Scholar
  32. Nadler, L. M., Stashenko, P., Hardy, R., Kaplan, W. D., Button, L. N., Kufe, D. W., Atman, K. H., and Schlossman, S. F., 1980, Serotherapy of a patient with a monoclonal antibody directed against a human lymphoma-associated antigen, Cancer Res. 40: 3147–3154.PubMedGoogle Scholar
  33. Olsson, L., and Kaplan, H. S., 1980, Human—human hybridomas producing monoclonal antibodies of predefined antigenic specificity, Proc. Natl. Acad. Sci. USA 77: 5429–5431.PubMedCrossRefGoogle Scholar
  34. Poiesz, B. J., Ruscetti, F. W., Gazdar, A. F., Bunn, P. A., Minna, J. D., and Gallo, R. C., 1980, Detection and isolation of type C retrovirus particles from fresh and ‘ultured lymphocytes of a patient with cutaneous T-cell lymphoma, Proc. Natl. Acad. Sci. USA 77: 7415–7419.PubMedCrossRefGoogle Scholar
  35. Ritz, J., Pesando, J. M., Sallan, S. E., Clavell, L. A., Notis-McConarty, J., Rosenthal, P., and Schlossman, S. F., 1981, Serotherapy of acute lymphoblastic leukemia with monoclonal antibody, Blood 58: 141–151.PubMedGoogle Scholar
  36. Rosen, A., and Klein, G., 1983, UV light-induced immunoglobulin heavy-chain class switch in a human lymphoblastoid cell line, Nature 306: 189–190.PubMedCrossRefGoogle Scholar
  37. Rosen, A., Britton, S., Gergely, P., Jondal, M., and Klein, G., 1977, Polyclonal Ig production after Epstein—Barr virus infection of human lymphocytes, Nature 267: 52–54.PubMedCrossRefGoogle Scholar
  38. Rosen, A., Persson, K., and Klein, G., 1983, Human monoclonal antibodies to a genus-specific chlamydial antigen, produced by EBV-transformed B cells, J. Immunol. 130: 2899–2902.PubMedGoogle Scholar
  39. Schulman, M., Wilde, C. D., and Kohler, G., 1978, A better cell line for making hybridomas secreting specific antibodies, Nature 276: 269–270.CrossRefGoogle Scholar
  40. Sears, H. F., Atkinson, B., Herlyn, D., Ernst, C., Matteis, J„ Steplewski, Z., and Koprowski, H., 1982, Phase I clinical trial of monoclonal antibody in treatment of gastrointestinal tumours, Lancet i:762–765.Google Scholar
  41. Seigneurin, J. M., Desgranges, C., Seigneurin, D., Paire, J., Renversez, J. C., Jacquemont, B., and Micouin, C., 1983, Herpes simplex virus glycoprotein D: Human monoclonal antibody produced by bone marrow cell line, Science 221: 173–175.PubMedCrossRefGoogle Scholar
  42. Sikora, K., Alderson, T., Phillips, J., and Watson, J. V., 1982, Human hybridomas from malignant gliomas, Lancet i:11–14.Google Scholar
  43. Sikora, K., Alderson, T., Ellis, J., Phillips, J., and Watson, J., 1983, Human hybridomas from patients with malignant disease, Br. J. Cancer 47: 135–145.PubMedCrossRefGoogle Scholar
  44. Steinitz, M., and Tamir, S., 1982, Human monoclonal autoimmune antibody produced in vitro: Rheumatoid factor generated by Epstein-Barr virus-transformed cell line, Eur. J. Immunol. 12: 126–133.PubMedCrossRefGoogle Scholar
  45. Steinitz, M., Klein, G., Koskimies, S., and Makela, O., 1977, EB virus-induced B lymphocyte cell lines producing specific antibody, Nature 269: 420–422.PubMedCrossRefGoogle Scholar
  46. Steinitz, M., Seppala, F., Eichman, K., and Klein, G., 1979, Establishment of a human lymphoblastoid cell line with the specific antibody production against group A streptococcal carbohydrate, Immunobiology 156: 41–47.PubMedGoogle Scholar
  47. Steinitz, M., Izak, G., Cohen, S., Ehrenfeld, M., and Flechner, I., 1980, Continuous production of monoclonal rheumatoid factor by EBV-transformed lymphocytes, Nature 287: 443–445.PubMedCrossRefGoogle Scholar
  48. Stevens, R. H., Macy, E., Morrow, C., and Saxon, A., 1979, Characterization of a circulating subpopulation of spontaneous anti-tetanus toxoid antibody producing B cells following in vivo booster immunization, J. Immunol. 122: 2498–2504.PubMedGoogle Scholar
  49. Sullivan, J. L., Byron, K. S., Brewster, F. F., and Purtilo, D., 1980, Deficient natural killer cell activity in X-linked lymphoproliferative syndrome, Science 210: 543–545.PubMedCrossRefGoogle Scholar
  50. Tsuchiya, S., Yokoyama, S., Yoshie, O., and Ono, Y., 1980, Production of diptheria antitoxin antibody in Epstein-Barr virus-induced lymphoblastoid cell lines, J. Immunol. 124: 1970–1976.PubMedGoogle Scholar
  51. Walker, S. M., Meinke, G. C., and Weigle, W. O., 1977, Cell separation on antigen-coated columns. Elimination of high rate antibody-forming cells and immunological memory cells, J. Exp. Med. 146: 445–446.PubMedCrossRefGoogle Scholar
  52. Watson, D. B., Burns, G. F., and MacKay, I. R., 1983, In vitro growth of B lymphocytes infiltrating human melanoma tissue by transformation with EBV: Evidence for secretion of anti-melanoma antibodies by some transformed cells, J. Immunol. 130: 2442–2447.Google Scholar
  53. Watson, J. V., Alderson, T., Sikora, K., and Phillips, J., 1983, Subcutaneous culture chamber for continuous infusion of monoclonal antibodies, Lancet i:99–100.Google Scholar
  54. Weiss, R. A., 1982, Hybridomas produce viruses as well as antibodies, Immunol. Today 3: 292–294.CrossRefGoogle Scholar
  55. Winger, L., Winger, C., Shastry, P., Russell, A., and Longenecker, M., 1983, Efficient generation in vitro, from human peripheral blood cells, of monoclonal Epstein-Barr virus transformants producing specific antibody to a variety of antigens without prior deliberate immunization, Proc. Natl. Acad. Sci. USA 80: 4484–4488.PubMedCrossRefGoogle Scholar
  56. Yoshie, O., and Ono, Y., 1980, Anti-phosphorylcholine antibody producing cells in human lymphoblastoid cell lines established by transformation with Epstein-Barr virus, Gell. Immunol. 56: 305–315.CrossRefGoogle Scholar
  57. Zurawski, V. R., Jr., Haber, E., and Black, P. M., 1978a, Production of antibody to tetanus toxoid by continuous human lymphoblastoid cell lines, Science 199: 1439–1441.PubMedCrossRefGoogle Scholar
  58. Zurawski, V. R., Jr., Spedden, S. E., Black, P., and Haber, E., 1978b, Clones of human lymphoblastoid cell lines producing antibody to tetanus toxoid, Gurr. Top. Microbiol. Immunol. 81: 152–155.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • John C. Roder
    • 1
  • Susan P. C. Cole
    • 1
  • Tsehay Atlaw
    • 1
  • Barbara G. Campling
    • 2
  • Ronald C. McGarry
    • 1
  • Danuta Kozbor
    • 3
  1. 1.Department of Microbiology and ImmunologyQueen’s UniversityKingstonCanada
  2. 2.Department of Medicine and Radiation OncologyQueen’s UniversityKingstonCanada
  3. 3.The Wistar Institute of Anatomy and BiologyPhiladelphiaUSA

Personalised recommendations