Advertisement

Fusion Partners for Production of Human Monoclonal Antibodies

  • Danuta Kozbor
  • Carlo M. Croce

Abstract

The technology for production of murine monoclonal antibodies has advanced enormously since its introduction by Köhler and Milstein (1975). However, the production of human monoclonal antibodies by fusion technologies has been hampered, mainly by the current scarcity of suitable human cell lines as fusion partners. Hypoxanthine-aminopterin-thymidine (HAT)-sensitive murine plasmacytomas have been fused with human lymphocytes to yield mouse-human hybrids that secrete human antibody against the Forssman antigen (Nowinski et al., 1980), keyhole limpet hemocyanin (KLH) (Lane et al., 1982), tetanus toxoid (Kozbor et al.,1982b; Butler et al., 1983), human tumor-associated antigen (Schlom et al.,1980; Sikora and Wright, 1981; Sikora and Phillips, 1981), and multiple endocrine organs (Satoh et al., 1983). These interspecies hybridomas preferentially segregate human chromosomes, making it difficult to derive stable lines secreting human antibody. However, the loss of human chromosomes from mouse-human hybridomas is not random. It is known, for example, that human chromosomes 14 (heavy chain) and 22 (λ light chain) are preferentially retained, whereas chromosome 2 (κ chain) is preferentially lost (Croce et al.,1979; Erikson et al., 1981).

Keywords

Human Monoclonal Antibody Tetanus Toxoid Lymphoblastoid Cell Line Fusion Partner Myeloma Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, P. G., Knost, J. A., Clarke, G., Wilburn, S., Oldham, R. K., and Foon, K. A., 1983, Determination of the optimal human cell lines for development of human hybridomas, J. Immunol. 131: 1201–1204.PubMedGoogle Scholar
  2. Atlaw, T., Kozbor, D., and Roder, J. C., 1984, Human monoclonal antibodies against Mycobacterium leprae, Inf. Immun.Google Scholar
  3. Bengtsson, D. B., Nabholz, M., Kennett, R. H., and Bodmer, W. F., 1975, Human intraspecific somatic cell hybrids: A genetic and karyotypic analysis of crosses between lymphocytes and D98/AH-2, Somat. Cell Genet. 1: 41–64.CrossRefGoogle Scholar
  4. Ber, R., Klein, G., Moar, M., Povey, S., Rosén, A., Westman, A., Yefenof, E., and Zeuthen, J., 1978, Somatic cell hybrids between human lymphoma lines. IV. Establishment and characterization of a P3HR-1/Daudi hybrid, Int. J. Cancer 21: 707.PubMedCrossRefGoogle Scholar
  5. Butler, Y. L., Lane, H. C., and Fauci, A. S., 1983, Delineation of optimal conditions for producing mouse—human heterohybridomas from human peripheral blood B cells of immunized subjects, J. Immunol. 130: 165–168.PubMedGoogle Scholar
  6. Chiorazzi, N., Wasserman, R. J., and Kunkel, H. G., 1982, Use of Epstein—Barr virus-transformed B cell lines for the generation of immunoglobulin-producing human B cell hybridomas, J. Exp. Med. 156: 930–935.PubMedCrossRefGoogle Scholar
  7. Croce, C. M., Shander, M., Martinis, J., Cicurel, L., D’Ancona, G. G., Dolby, T. W., and Koprowski, H., 1979, Chromosomal locations of the genes for human immunoglobulin heavy chains, Eur. J. Immunol. 10: 486–488.CrossRefGoogle Scholar
  8. Croce, C. M., Linnenbach, A., Hall, W., Steplewski, Z., and Koprowski, H., 1980, Production of human hybridomas secreting antibodies to measles virus, Nature 228: 488–489.CrossRefGoogle Scholar
  9. Diehl, V., Schaadt, M., Kirchner, H., Hellriegel, K. P., Gudat, F., Fonatsch, C., Lskewitz, E., and Guggenheim, R., 1978, Long-term cultivation of plasma cell leukemia cells and autologous lymphoblasts (LCL) in vitro: A comparative study, Blut 36: 331–338.PubMedCrossRefGoogle Scholar
  10. Dwyer, D. S., Bradley, R. J., Urguhart, C. K., and Kearney, J. F., 1983, Naturally occurring antiidiotypic antibodies in myasthenia gravis patients, Nature 301: 611–614.PubMedCrossRefGoogle Scholar
  11. Edwards, P. A., Smith, C. M., Neville, A. M., and O’Hare, M. J., 1982, A human-hybridoma system based on a fast-growing mutant of the ARH-77 plasma cell leukemia-derived line, Eur. J. Immunol. 12: 641–648.PubMedCrossRefGoogle Scholar
  12. Eisenbarth, G. S., Linnenbach, A., Jackson, R., Scearce, R., and Croce, C. M., 1982, Human hybridomas secreting anti-islet autoantibodies, Nature 300: 264–267.PubMedCrossRefGoogle Scholar
  13. Erikson, J., Martinis, J., and Croce, C. M., 1981, Assignment of the genes for human k immunoglobulin chains to chromosome 22, Nature 294: 173–175.PubMedCrossRefGoogle Scholar
  14. Glassy, M. C., Handley, H. H., Hagiwara, H., and Royston, I., 1983, UC 729–6, a human lymphoblastoid B-cell line useful for generating antibody-secreting human—human hybridomas, Proc. Natl. Acad. Sci. USA 80: 6327–6331.PubMedCrossRefGoogle Scholar
  15. Ishihara, N., Kiyofuzi, T., and Oboshi, S., 1977, Establishment and characterization of a human plasmacyte cell line derived from a patient with IgD multiple myeloma, in: Proceedings Japanese Cancer Association, Annual Meeting, 36: 120–126.Google Scholar
  16. Jobin, M. E., Fahey, J. L., and Price, Z., 1974, Long-term establishment of a human plasmacyte cell line derived from a patient with IgD multiple myeloma. I. Requirement of a plasmacytestimulating factor for the proliferation of myeloma cells in tissue culture, J. Exp. Med. 140: 494–507.Google Scholar
  17. Karpas, A., Fischer, P., and Swirsky, D., 1982, Human plasmacytoma with an unusual karyotypeGoogle Scholar
  18. growing in vitro and producing light-chain immunoglobulin, Lancet 1:931–933.Google Scholar
  19. Kearney, J. F., Radbrusch, A., Liesegang, B., and Rajewski, K., 1979, A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibodysecreting hybrid cell lines, J. Immunol. 1231: 1548–1550.Google Scholar
  20. Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256: 495–497.PubMedCrossRefGoogle Scholar
  21. Köhler, G., Howe, S. C., and Milstein, C., 1976, Fusion between immunoglobulin-secreting and non-secreting myeloma cell lines, Eur. J. Immunol. 6: 292–295.PubMedCrossRefGoogle Scholar
  22. Kozbor, D., and Roder, J. C., 1981, Requirements for the establishment of high-titered human monoclonal antibodies against tetanus toxoid using the Epstein—Barr virus technique, J. Immunol. 127: 1275–1280.PubMedGoogle Scholar
  23. Kozbor, D., and Roder, J. C., 1983, Monoclonal antibodies produced by human lymphocytes, Immunol. Today 4 (3): 72–79.Google Scholar
  24. Kozbor, D., and Roder, J. C., 1984, In vitro stimulated lymphocytes as a source of human hybridomas, Eur. J. Immunol. 14: 23–27.PubMedCrossRefGoogle Scholar
  25. Kozbor, D., Lagarde, A. E., and Roder, J. C., 1982a, Human hybridomas constructed with antigen-specific Epstein—Barr virus-transformed cell lines, Proc. Natl. Acad. Sci. USA 79: 6651–6655.PubMedCrossRefGoogle Scholar
  26. Kozbor, D., Roder, J. C., Chang, T. H., Steplewski, Z., and Koprowski, H., 1982b, Human anti-tetanus toxoid monoclonal antibody secreted by EBV-transformed human B cells fused with the murine myeloma, Hybridoma 1 (3): 323–328.PubMedCrossRefGoogle Scholar
  27. Kozbor, D., Dexter, D., and Roder, J. C., 1983, A comparative analysis of the phenotypic characteristics of available fusion partners for the construction of human hybridomas, Hybridoma 2 (1): 7–16.PubMedCrossRefGoogle Scholar
  28. Kozbor, D., Tripputi, P., Roder, J. C., and Croce, C. M., 1984, A human hybrid myeloma for production of human monoclonal antibody, J. Immunol., 133: 3001–3005.PubMedGoogle Scholar
  29. Lane, H. C., Shelhamer, J. H., Motowski, H. S., and Fauci, A. S., 1982, Human monoclonal anti-keyhole limpet hemocyanin antibody-secreting hybridoma produced from peripheral blood B lymphocytes of a keyhole limpet hemocyanin-immune individual, J. Exp. Med. 155: 333–337.PubMedCrossRefGoogle Scholar
  30. Larrick, J. W., Truitt, K. E., Raubitschek, A. A., Senyk, G., and Wang, J. C. N., 1983, Characterization of human hybridomas secreting antibody to tetanus toxoid, Proc. Natl. Acad. Sci. USA 80: 6376–6380.PubMedCrossRefGoogle Scholar
  31. Matsuoka, Y., Moore, G. E., Yagi, Y., and Pressman, D., 1967, Production of free light chains of immunoglobulin by a hematopoietic cell line derived from a patient with multiple myeloma, Proc. Soc. Exp. Biol. 125: 1246–1250.PubMedGoogle Scholar
  32. Nilsson, K., 1978, Established human lymphoid cell lines as model for B-lymphocyte differentiation, in: Human Lymphocyte Differentiation: Its Application to Cancer ( B. Serrou and C. Rosenfeld, eds.), Elsevier/North-Holland, Amsterdam, pp. 307–317.Google Scholar
  33. Nilsson, K., and Pontén, J., 1975, Classification and biological nature of established human hematopoietic cell lines, Int. J. Cancer 15: 321–341.PubMedCrossRefGoogle Scholar
  34. Nilsson, K., Bennich, H., Johansson, S. G. O., and Pontén, J., 1970, Established immunoglobulin producing myeloma (IgE) and lymphoblastoid (IgG) cell lines from an IgE myeloma patient, Clin. Exp. Immunol. 7: 477–489.Google Scholar
  35. Nowinski, R., Berglund, C., Lane, Y., Lostrom, M., Bernstein, I., Young, W., Hakomori, S., Hill, L., and Cooney, M., 1980, Human monoclonal antibody against Forssman antigen, Science 210: 537–539.PubMedCrossRefGoogle Scholar
  36. Olsson, L., and Kaplan, H. S., 1980, Human—human hybridomas producing monoclonal antibodies of predefined antigenic specificity, Proc. Natl. Acad. Sci. USA 77: 5429–5431.PubMedCrossRefGoogle Scholar
  37. Olsson, L., Kronstrom, H., Cambon-De Mouzom, A., Honsik, C., Brodin, T., and Jakobsen, B., 1983, Antibody-producing human—human hybridoma. I. Technical aspects, J. Immunol. Meth. 61: 17–32.Google Scholar
  38. Olsson, L., Andreasen, R. B., Ost, A., Christensen, B., and Biberfeld, P., 1984, Antibody-producing human—human hybridomas. II. Derivation and characterization of an antibody specific for human leukemia cells, J. Exp. Med. 159: 537–550.PubMedCrossRefGoogle Scholar
  39. Osband, M., Cavagnaw, J., and Kupchick, H. Z., 1981, Biochemical analysis of specific histamine HI and H2 receptors on lymphocytes, Blood 60 (5, Suppl. 1): 81a (abstract).Google Scholar
  40. Phillips, J., Sikora, K., and Watson, J. V., 1982, Localization of glioma by human monoclonal antibody, Lancet 2: 1214–1215.PubMedCrossRefGoogle Scholar
  41. Pickering, J. W., and Gelder, F. B., 1982, A human myeloma cell line that does not express immunoglobulin but yields a high frequency of antibody-secreting hybridomas, J. Immunol. 129: 406–412.PubMedGoogle Scholar
  42. Ritts, R. E., Jr., Ruiz-Arguelles, A., Weyl, K. G., Bradley, A. L., Weihmeir, B., Jacobsen, D. Y., and Strehlo, B. L., 1983, Establishment and characterization of a human non-secretoryGoogle Scholar
  43. plasmoid cell line and its hybridization with human B cells, Int. J. Cancer 31: 133–141.Google Scholar
  44. Satoh, J., Prabhakar, B. S., Haspel, M. V., Ginsberg-Fellner, F., and Notkins, A. L., 1983, Human monoclonal auto-antibodies that react with multiple endocrine organs, N. Engl. J. Med. 309: 217–220.PubMedCrossRefGoogle Scholar
  45. Schlom, T., Wunderlich, D., and Teramoto, Y. A., 1980, Generation of human monoclonal antibodies reactive with human mammary carcinoma cells, Proc. Natl. Acad. Sci. USA 77: 6841–6845.PubMedCrossRefGoogle Scholar
  46. Shibuya, T., Niho, Y., Yamasaki, K., Nakayama, K., Oka, Y., Arase, K., and Yanase, T., 1980, Establishment of a lambda immunoglobulin producing myeloma cell line, Acta Haem. Jpn. 43: 256 (In Japanese).Google Scholar
  47. Shoenfeld, Y., Hsu-Lin, S. C., Gabriels, J. E., Silberstein, L, E., Furie, B. C., Furie, B., Stollar, B. D., and Schwartz, R. S., 1982, Production of auto-antibodies by human—human hybridomas, J. Clin. Invest. 70: 205–208.Google Scholar
  48. Shoenfeld, Y., Rauch, J., Massicotte, H., Datta, S. K., Andre-Schwartz, J., Stollar, B. D., and Schwartz, R. S., 1983, Polyspecificity of monoclonal lupus auto-antibodies produced by human—human hybridomas, N. Engl. J. Med. 308: 414–420.PubMedCrossRefGoogle Scholar
  49. Sikora, K., and Phillips, J., 1981, Human monoclonal antibodies to glioma cells, Br. J. Cancer 43: 105–107.PubMedCrossRefGoogle Scholar
  50. Sikora, K., and Wright, R., 1981, Human monoclonal antibodies to lung-cancer antigens, Br. J. Cancer 43: 696–700.PubMedCrossRefGoogle Scholar
  51. Sikora, K., Alderson, T., Phillips, J., and Watson, J. V., 1982, Human hybridomas from malignant gliomas, Lancet 1: 11–14.PubMedCrossRefGoogle Scholar
  52. Stähli, Ch., Staehelin, T., Miggiano, V., Schmidt, J., and Häring, P., 1980, High frequencies of antigen-specific hybridomas: Dependence on immunization parameters and prediction by spleen cell analysis, J. Immunol. Meth. 32: 297–304.CrossRefGoogle Scholar
  53. Standbridge, E. J., Der, C. J., Roenson, C. J., Nishimi, R. Y., Peehl, D. M., Weissman, B. E., and Wilkinson, J. E., 1982, Human cell hybrids: Analysis of transformation and tumorigenicity, Science 215: 252–259.CrossRefGoogle Scholar
  54. Strike, L., Devens, B. H., and Lundak, R. L., 1982, Production of human hybridomas secreting specific immunoglobulin following in vitro immunization, Immunology 163 (2–4): 272 (abstract).Google Scholar
  55. Teng, N. N. H., Lam, K. S., Riera, F. C., and Kaplan, H., 1983, Construction and testing of mouse—human heteromyelomas for human monoclonal antibody production, Proc. Natl. Acad. Sci. USA 80: 7308–7312.PubMedCrossRefGoogle Scholar
  56. Togawa, A., Inoue, N., Miyamoto, K., Hyodo, H., and Namba, M., 1982, Establishment and characterization of a human myeloma cell line (KMM-1), Int. J. Cancer 29: 495–500.PubMedCrossRefGoogle Scholar
  57. Warenius, H. M., Taylor, J. W., Durack, B. E., and Cross, P. A., 1983, The production of human hybridomas from patients with malignant melanoma. The effect of pre-stimulation of lymphocytes with pokeweed mitogen, Eur. J. Cancer Clin. Oncol. 19: 347–355.PubMedCrossRefGoogle Scholar
  58. Zeijlemaker, W. P., Astaldi, G. C. B., Janssen, M. C., Stricker, E. A. M., and Tiebout, R. F., 1982, Production of human monoclonal antibodies, in: Proceedings 15th International Leucocyte Culture Conference, Asilomar, pp. 368–369.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Danuta Kozbor
    • 1
  • Carlo M. Croce
    • 1
  1. 1.The Wistar Institute of Anatomy and BiologyPhiladelphiaUSA

Personalised recommendations