Advertisement

Human T-Lymphocyte Subsets and T-T Hybridomas

An Overview
  • Steven Coutre
  • Steven K. H. Foung
  • Edgar G. Engleman

Abstract

Unlike B lymphocytes which have a single major function, the secretion of antibody, T lymphocytes mediate a variety of immunologic and nonimmunologic functions. Human T cells can be divided into several distinct cell types or subsets, which interact through cell surface molecules with one another, monocytes, and B cells to generate and regulate immunity. In addition, many T-cell functions appear to be mediated wholly or in part by soluble immunoregulatory factors, or lymphokines, at least as numerous as the subsets from which they are derived. Thus, an understanding of immune function in man depends on a thorough knowledge of the structure and actions both of T-cell surface molecules and T-cell-derived lymphokines.

Keywords

Major Histocompatibility Complex Suppressor Cell Murine Monoclonal Antibody Mixed Leukocyte Reaction Cytotoxic Effector Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cantor, H., and Boyse, E. A. 1977, Regulation of cellular and humoral immunity by T cell subclasses, Cold Spring Harbor Symp. Quant. Biol. 41: 23.PubMedCrossRefGoogle Scholar
  2. Damle, N. K., and Engleman, E. G., 1983, Immunoregulatory T cell circuits in man. Alloantigenprimed inducer cells activate alloantigen-specific suppressor T cells in the absence of the initial antigenic stimulus, J. Exp. Med. 158: 159.PubMedCrossRefGoogle Scholar
  3. Damle, N. K., Mohagheghpour, N., Hansen, J. A., and Engleman, E. G., 1983, Alloantigenspecific cytotoxic and suppressor T lymphocytes are derived from phenotypically distinct precursors, J. Immunol. 131: 2296.PubMedGoogle Scholar
  4. Damle, N. K., Mohagheghpour, N., and Engleman, E. G., 1984a, Soluble antigen primed inducer T cells activate antigen specific suppressor T cells in the absence of antigen pulsed accessory cells. Phenotypic definition of suppressor, inducer and effector cells, J. Immunol. 132: 644.PubMedGoogle Scholar
  5. Damle, N. K., Mohagheghpour, N., and Engleman, E. G., 1984b, Activation of antigen-specific suppressor T lymphocytes in man involves dual recognition of self class I MHC molecules and Leu 4/T3 associated structures on the surface of inducer T lymphocytes, J. Immunol. 133: 1235.PubMedGoogle Scholar
  6. Damle, N. K., Mohagheghpour, N., Kansas, G., Fishwild, D., and Engleman, E. G., 1985, Immunoregulatory T cell circuits in man. Identification of a distinct T cell subpopulation of helper/inducer lineage that amplifies the development of alloantigen-specific suppressor T cells, J. Immunol. 134: 235.PubMedGoogle Scholar
  7. Engleman, E. G., Benike, C. J., Grumet, F. C., and Evans, R. L., 1981a, Activation of human T lymphocyte subsets: Helper and suppressor/cytotoxic T cells recognize and respond to distinct histocompatibility antigens, J. Immunol. 127: 2124.Google Scholar
  8. Engleman, E. G., Benike, C. J., Glickman, E., and Evans, R. L., 1981b, Antibodies to membrane structures that distinguish suppressor/cytotoxic and helper T lymphócyte subpopulations block the mixed leukocyte reaction in man, J. Exp. Med. 154: 193.CrossRefGoogle Scholar
  9. Engleman, E. G., Benike, C. J., Metzler, C., Gatenby, P. A., and Evans, R. L., 1983, Blocking of human T lymphocyte functions by anti-Leu-2 and anti-Leu-3 antibodies: Differential inhibition of proliferation and suppression, J. Immunol. 130: 2623.PubMedGoogle Scholar
  10. Evans, R. L., Wall, D. W., Platsoucas, C. D., Siegal, F. P., Fikrig, S. M., Testa, C. M., and Good, R. A., 1981, Thymus-dependent membrane antigens in man. Inhibition of cell-mediated lympholysis by monoclonal antibodies to the TH2 antigen, Proc. Natl. Acad. Sci. USA 78: 544.PubMedCrossRefGoogle Scholar
  11. Falkoff, R. J. M., Muragudin, A., Hong, J. X., Butler, J. L., Dinarello, C. A., and Francis, A. S., 1983, The effects of interleukin 1 on human B cell activation and proliferation, J. Immunol. 131: 801.PubMedGoogle Scholar
  12. Fathman, C. G., and Engleman, E. G., 1985, T cell lines and hybrids in mouse and man, in: Handbook of Experimental Immunology, 4th ed. ( D. M. Weir, L. A. Herzenberg, C. C. Blackwell, and L. A. Herzenberg, eds.), Blackwell, London, In press.Google Scholar
  13. Fathman, C. G., and Fitch, F. W. (eds.), 1982, Isolation, Characterization and Utilization of T lymphocyte Clones, Academic Press, London.Google Scholar
  14. Finke, J. H., Sharma, S. D., and Scott, J. W., 1981, Generation of alloreactive cytotoxic T lymphocytes: Production of T cell and monocyte helper factors on addition to ILI and IL2 by peritoneal cells from mice immunized to Lisifrie monocytogenes, J. Immunol. 127: 125.Google Scholar
  15. Foung, S. K. H., Sasaki, D., Grumet, F. C., and Engleman, E. G., 1982, Production of functional human T-T hybridomas in selection medium lacking aminopterin and thymidine, Proc. Natl. Acad. Sci. USA 79: 7494.CrossRefGoogle Scholar
  16. Gatenby, P. A., Kotzin, B. L., and Engleman, E. G., 1981, Induction of immunoglobulin-secreting cells in the human autologous mixed leukocyte reaction. Regulation by helper and suppressor lymphocyte subsets defined with monoclonal antibodies, J. Immunol. 127: 2130.Google Scholar
  17. Gatenby, P. A., Kansas, G. S., Xian, C. Y., Evans, R. L., and Engleman, E. G., 1982, Dissection of immunoregulatory subpopulations of T lymphocytes within the helper and suppressor sub-lineages in man, J. Immunol. 129: 1997.Google Scholar
  18. Germain, R. N., and Benacerraf, B., 1981, A single major pathway of T-lymphocyte interactions in antigen-specific immune suppression, Scand. J. Immunol. 13: 1.PubMedCrossRefGoogle Scholar
  19. Kappler, J. W., Skidmore, B., White, J., and Marrack, P., 1981, Antigen-inducible H-2 restricted interleukin 2 producing T cell hybridomas, J. Exp. Med. 153: 1198.PubMedCrossRefGoogle Scholar
  20. Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256: 495.PubMedCrossRefGoogle Scholar
  21. Kotzin, B. L., Benike, C. J., and Engleman, E. G., 1981, Induction of immunoglobulin-secreting cells in the allogeneic MLR. Regulation by helper and suppressor lymphocyte subsets in man, J. Immunol. 127: 931.PubMedGoogle Scholar
  22. Krensky, A. M., Reiss, C. S., Wier, J. M., Strominger, J. L., and Burakoff, Si., 1982, Long-term human cytolytic T cell lines allospecific for HLA-D6 antigen are OKT4+, Proc. Natl. Acad. Sci. USA 79: 2365.PubMedCrossRefGoogle Scholar
  23. Lakow, E., Tsoukas, C. D., Vaughan, J. H., Altman, A., and Carson, D. A., 1983, Human T cell hybridomas for Epstein—Barr virus infected B lymphocytes, J. Immunol. 130: 169.PubMedGoogle Scholar
  24. Marrack, P., Hannam, C., Harris, M., Haskin, K., Kubo, R., Pigeon, M., Shimonkevitz, R., White, J., and Kappier, J., 1983, Antigen-specific major histocompatibility complex-restricted T cell receptors, Immunol. Rev. 76: 131.PubMedCrossRefGoogle Scholar
  25. Meuer, S. C., Schlossman, S. F., and Reinherz, E. L., 1982a, Clonal analysis of human cytotoxic T lymphocytes T4+ and T8 + effector cells recognize products of different histocompatibility regions, Proc. Natl. Acad. Sci. USA 79: 4395.PubMedCrossRefGoogle Scholar
  26. Meuer, S. C., Hussey, R. E., Hodgdon, J. C., Hercend, T., and Schlossman, S. F., 1982b, Surface structures involved in target recognition by human cytotoxic T lymphocytes, Science 218: 471.PubMedCrossRefGoogle Scholar
  27. Meuer, S. C., Acuto, O., Hussey, R. E., Hodsdon, J. C., Fitzgerald, K. A., Schlossman, and Reinherz, E. L., 1983, Evidence for the T3-associated 90k heterodimer as the T cell antigen receptor, Nature 303: 808.Google Scholar
  28. Mitsuya, H., Guo, H.-G., Cossman, J., Megson, M., Reitz, M. S., and Broder, S., 1984, Functional properties of antigen-specific T cells injected by human T-cell leukemia-lymphoma virus (HTL°-t), Science 225: 1484.PubMedCrossRefGoogle Scholar
  29. Mohagheghpour, N., Benike, C. J., Kansas, G. S., Bieber, C., and Engleman, E. G., 1983, Activation of antigen specific suppressor T cells in the presence of cyclosporin requires interactions between T cells of inducer and suppressor lineage, J. Clin, Invest. 72: 2092.CrossRefGoogle Scholar
  30. Moller, G. (ed.), 1982, Interleukins and lymphocyte activation, Immunol. Rev. 63.Google Scholar
  31. Moller, G. (ed.), 1984, B cell growth and differentiation factors, Immunol. Rev. 78.Google Scholar
  32. Okada, M., Sakaguchi, N., Yoshimura, N., Hara, H., Shimuzu, K., Yoshida, N., Yoshizaki, K., Kishimoto, S., Yamamura, Y., and Kishimoto, T., 1983, B cell growth factors and B cell differentiation factor from human T hybridomas. Two distinct kinds of B cell growth factor and their synergism in B cell proliferation, J. Exp. Med. 157: 583.PubMedCrossRefGoogle Scholar
  33. Reinherz, E. L., Kung, P. C., Goldstein, G., and Schlossman, S. F., 1979, Separation of functional subsets of human T cells by a monoclonal antibody, Proc. Natl. Acad. Sci. USA 76: 4061.PubMedCrossRefGoogle Scholar
  34. Reinherz, E. L., Kung, P. C., Goldstein, G., and Schlossman, S. F., 1980, A monoclonal antibody reactive with the human cytotoxic/supressor T cell subset previously defined by a heteroantiserum termed TH2, J. Immunol. 124: 1301.PubMedGoogle Scholar
  35. Sansoni, P., Silverman, E. D., Khan, M. M., Melmon, K. L., and Engleman, E. G., 1985, Immunoregulatory T cells in man. Histamine-induced suppressor T cells are derived from a Leu 2± (T8+) subpopulation distinct from that which gives rise to cytotoxic T cells, J. Clin. Invest. 75: 650.PubMedCrossRefGoogle Scholar
  36. Webb, D. R., Kapp, J. A., and Pierce, C. W., 1983. The biochemistry of antigen-specific T cell factors, Annu. Rev. Immunol. 1: 423.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Steven Coutre
    • 1
  • Steven K. H. Foung
    • 1
  • Edgar G. Engleman
    • 1
  1. 1.Department of Pathology, Stanford University School of MedicineStanford University Medical CenterStanfordUSA

Personalised recommendations