Human—Human Hybridomas in the Study of Immunodeficiencies

  • Kathleen A. Denis
  • Randolph Wall
  • Andrew Saxon


The majority of B-lymphocyte hybridomas, whether rodent—rodent, rodent—human, or human—human, are produced to use the resulting antibodies as tools. These monoclonal antibody products of hybridomas have been used successfully to purify proteins, define antigenic structures on normal and malignant cells, characterize viruses and microorganisms, and numerous other related tasks (Kennett et al., 1980; Yelton and Scharff, 1981). Certainly one of the major goals of human—human hybridoma technology is to use human monoclonal antibodies in the diagnosis and therapy of a wide range of human disease states.


Heavy Chain Peripheral Blood Lymphocyte Immunoglobulin Heavy Chain Heavy Chain Gene Common Variable Immunodeficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ammann, A. J., and Hong, R., 1971, Selective IgA deficiency: Presentation of 30 cases and a review of the literature, Medicine 50: 223.PubMedCrossRefGoogle Scholar
  2. Ashman, R. F., Saxon, A., and Stevens, R. H., 1980, Profile of multiple lymphocyte functional defects in acquired hypogammaglobulinemia, derived from in vitro cell recombination analysis, J. Allergy Clin. Immunol. 65: 242–256.PubMedCrossRefGoogle Scholar
  3. Boyd, A. W., and Schrader, J. W., 1982, Derivation of macrophage-like lines from the pre-B lymphoma ABLS 8.1 using 5-azacytidine, Nature 297: 691–693.PubMedCrossRefGoogle Scholar
  4. Boyum, A., 1968, Isolation of mononuclear cells and granulocytes from human blood, Scand. J. Clin. Lab. Invest. (Suppl). 97: 77.Google Scholar
  5. Burrows, P., Lejeune, M., and Kearney, J. F., 1979, Evidence that murine pre-B cells synthesize µ heavy chain but no light chains, Nature 280: 838–841.PubMedCrossRefGoogle Scholar
  6. De Gast, G. C., Wilkins, S. R., Webster, A. B. D., Rickinson, A. and Platts-Mills, T. A. E., 1980, Functional “immaturity” of isolated B cells from patients with hypogammaglobulinemia, Clin. Exp. Immunol. 42: 535–544.PubMedGoogle Scholar
  7. de la Concha, E. G., Oldman, G., Webster, A. D. B., Asherson, G. I., and Platts-Mills, T. A. E., 1976, Quantitative measurements of T and B cell function in variable primary hypogammaglobulinemia: Evidence for a consistent B-cell defect, Clin. Exp. Immunol. 27: 208.Google Scholar
  8. Denis, K. A., and Klinman, N. R., 1983, Genetic and temporal control of neonatal antibody expression, J. Exp. Med. 157: 1170–1183.CrossRefGoogle Scholar
  9. Denis, K. A., Wall, R., and Saxon, A., 1983, Human—human B cell hybridomas from in vitro stimulated lymphocytes of patients with common variable immunodeficiency, J. Immunol. 131: 2273–2278.PubMedGoogle Scholar
  10. Dolby, T. W., Devuono, J., and Croce, C. M., 1980, Cloning and partial nucleotide sequence of human immunoglobulin µ chain cDNA from B cells and mouse—human hybridomas, Proc. Natl. Acad. Sci. USA 77: 6027–6031.PubMedCrossRefGoogle Scholar
  11. Flanagan, J. G., and Rabbitts, T. H., 1982, Arrangement of human immunoglobulin heavy chain constant region genes implies evolutionary duplication of a segment containing e, y, and a genes, Nature 300: 709–713.PubMedCrossRefGoogle Scholar
  12. Geha, R. S., Schneeberger, E., Merler, E., and Rosen, F. S., 1974, Heterogeneity of “acquired” or common variable agammablobulinemia, N. Engl. J. Med. 291: 1–6.PubMedCrossRefGoogle Scholar
  13. Gupta, S., and Good, R. A., 1980, Markers of human lymphocyte subpopulations in primary immunodeficiency and lymphoproliferative disorders, Sem. Hematol. 17: 1–29.Google Scholar
  14. Honjo, T., 1983, Immunoglobulin genes, Annu. Rev. Immunol. 1: 499–528.CrossRefGoogle Scholar
  15. Howard, M., and Paul, W. E., 1983, Regulation of B-cell growth and differentiation by soluble factors, Annu. Rev. Immunol. 1: 307–33.CrossRefGoogle Scholar
  16. Kennett, R. H., Denis, K. A., Tung, A. S., and Klinman, N. R., 1978, Hybrid plasmacytoma production: Fusions with adult spleen cells, monoclonal spleen fragments, neonatal spleen cells and human spleen cells, Curr. Top. Microbiol. Immunol. 81: 77–91.PubMedGoogle Scholar
  17. Kennett, R. H., McKearn, T. J., and Bechtol, K. B., 1980, Monoclonal Antibodies, Plenum Press, New York.Google Scholar
  18. Klein, G., 1983, Specific chromosomal translocations and the genesis of B-cell derived tumors in mice and men, Cell 32: 311–312.PubMedCrossRefGoogle Scholar
  19. Köhler, G., and Milstein, C., 1976, Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion, Eur. J. Immunol. 6: 511–519.PubMedCrossRefGoogle Scholar
  20. Kozbor, D., and Roder, J. C., 1983, The production of monoclonal antibodies from human lymphocytes, Immunol. Today 4: 72–79.CrossRefGoogle Scholar
  21. Lawton, A. R., Royal, S. A., Self, K. S., and Cooper, M. D., 1972, IgA determinants on B lymphocytes in patients with deficiency of circulating IgA, J. Lab. Clin. Med. 80: 26–33.PubMedGoogle Scholar
  22. Leder, P., 1982, The genetics of antibody diversity, Sci. Amer. 246: 102–115.PubMedCrossRefGoogle Scholar
  23. Levy, R., Dilley, J., Brown, S., and Bergman, Y., 1980, Mouse x human hybridomas, in: Monoclonal Antibodies ( R. H. Kennett, T. J. McKearn, and K. B. Bechtol, eds.), Plenum Press, New York, pp. 137–153.Google Scholar
  24. Lipsky, P. E., 1980, Staphylococcal protein A, a T cell-regulated polyclonal activator of human B cells, J. Immunol. 125: 155–162.PubMedGoogle Scholar
  25. Littlefield, J. W., 1964, Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants, Science 145: 709.PubMedCrossRefGoogle Scholar
  26. Mains, P. E., and Sibley, C. H., 1982, Control of IgM synthesis in the murine pre-B cell line, 70Z/3, J. Immunol. 128: 1664–1670.PubMedGoogle Scholar
  27. Max, E. E., Battey, J., Ney, R., Kirsch, I. R., and Leder, P., 1982, Duplication and deletion in the human immunoglobulin genes, Cell 29: 691–699.PubMedCrossRefGoogle Scholar
  28. Mitsuya, H., Osaki, K., Tomino, S., Katsuki, T., and Kishimoto, S., 1981, Pathophysiologic analysis of peripheral blood lymphocytes from patients with primary immunodeficiency. I. Ig synthesis by peripheral blood lymphocytes stimulated with either PWM or EBV in vitro, J. Immunol. 127: 311–315.PubMedGoogle Scholar
  29. Perry, R. P., Kelley, D. E., Coleclough, C., and Kearney, J. F., 1981, Organization and expression of immunoglobulin genes in fetal liver hybridomas, Proc. Natl. Acad. Sci. USA 78: 247–251.PubMedCrossRefGoogle Scholar
  30. Russell, W. C., Newman, C., and Williamson, D. H., 1975, A simple cytochemical technique for demonstration of DNA in cells infected with mycoplasmas and viruses, Nature 253: 461–462.PubMedCrossRefGoogle Scholar
  31. Saiki, O., and Ralph, P., 1981, Induction of human immunoglobulin secretion. I. Synergistic effect of B cell mitogen Cowan I plus T cell mitogens or factors, J. Immunol. 127: 1044–1047.PubMedGoogle Scholar
  32. Schwaber, J. F., and Rosen, F. S., 1978, Induction of human immunoglobulin synthesis and secretion in somatic cell hybrids of mouse myeloma and human B lymphocytes from patients with agammaglobulinemia, J. Exp. Med. 148: 974–986.PubMedCrossRefGoogle Scholar
  33. Schwaber, J., Lazarus, H., and Rosen, F., 1978, Bone marrow-derived lymphoid cell lines from patients with agammaglobulinemia, J. Clin. Invest. 62: 302–310.PubMedCrossRefGoogle Scholar
  34. Schwaber, J. F., Klein, G., Ernberg, I., Rosen, A., Lazarus, H., and Rosen, F. S., 1980, Deficiency of Epstein—Barr virus (EBV) receptors on B lymphocytes from certain patients with common varied agammaglobulinemia, J. Immunol. 24: 2191–2196.Google Scholar
  35. Schwaber, J., Molgaard, H., Orkin, S. H., Gould, H. J., and Rosen, F. S., 1983, Early pre-B cells from normal and X-linked agammaglobulinemia produce Cu without an attached Vtt region, Nature 304: 355–358.PubMedCrossRefGoogle Scholar
  36. Southern, E. M., 1975, Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Bio. 98: 503–517.CrossRefGoogle Scholar
  37. Stevens, R. H., Tamaroff, M., and Saxon, A., 1980, Inability of patients with common variable hypogammaglobulinemia to generate lymphoblastoid B cells following booster immunization, Clin. Immunol. Immunopathol. 16: 336–343.PubMedCrossRefGoogle Scholar
  38. Thomas, P. S., 1980, Hybridization of denatured DNA and small DNA fragments transferred to nitrocellulose, Proc. Natl. Acad. Sci. USA 77: 5201–5205.PubMedCrossRefGoogle Scholar
  39. Tonegawa, S., 1983, Somatic generation of antibody diversity, Nature 302: 575–581.PubMedCrossRefGoogle Scholar
  40. Waldmann, T. A., 1976, Defect in IgA secretion in IgA specific suppressor cells in patients with selective IgA deficiency, Trans. Assoc. Am. Physicians 89: 215.PubMedGoogle Scholar
  41. Wall, R., and Kuehl, M., 1983, Biosynthesis and regulation of immunoglobulins, Annu. Rev. Immunol. 1: 393–422.PubMedCrossRefGoogle Scholar
  42. Yelton, D. E., and Scharff, M. D., 1981, Monoclonal antibodies: A powerful new look in biology and medicine, Annu. Rev. Biochem. 50: 657–680.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Kathleen A. Denis
    • 1
  • Randolph Wall
    • 1
  • Andrew Saxon
    • 2
  1. 1.Departments of Microbiology and ImmunologyUCLA School of MedicineLos AngelesUSA
  2. 2.Department of MedicineUCLA School of MedicineLos AngelesUSA

Personalised recommendations