Advertisement

Human—Human Hybridoma Technology

Five Years of Technical Improvements, and Its Application in Cancer Biology
  • Lennart Olsson
  • Peter Brams

Abstract

Cloning and immortalization of antibody-producing human B lymphocytes are required to establish monoclonal cell lines that secrete human immunoglobulin of predefined specificity. Such cultures may be obtained either (1) by transformation of normal B lymphocytes, e.g., by virus, or (2) by somatic cell hybridization of normal B lymphocytes with malignant cells, resulting in cell hybrids that have preserved the secretion of specific antibody of the B lymphocyte and the growth properties of the malignant cells. The former method has been used almost exclusively with Epstein—Barr virus (EBV) as the transforming agent, and some human monoclonal antibodies with interesting specificity have been obtained by this method (Steinitz et al., 1979; Zurawski et al., 1978; Irie et al.,1982; Watson et al., 1983; Rosen et al.,1983).

Keywords

Human Monoclonal Antibody Pokeweed Mitogen Fusion Frequency Murine MAbs Human Lymphoblastoid Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, P. G., Knost, J. A., Clarke, G., Wilburn, S., Oldham, R. K., and Foon, K. A., 1983, Determination of the optimal human cell lines for development of human hybridomas, J. Immunol. 131: 1201–1204.PubMedGoogle Scholar
  2. Antel, J., Oger, J. J.-F., Iackevicius, S., Kuo, H. H., and Arnason, B. G. W., 1982, Modulation of T-lymphocyte differentiation antigens: Potential relevance for multiple sclerosis, Proc. Natl. Acad. Sci. USA 79: 3330–3334.PubMedCrossRefGoogle Scholar
  3. Brodin, T., Olsson, L., and Sjögren, H. 0., 1983, Cloning of human myeloma/hybridoma and lymphoma cell lines by enriched human monocytes as feeder layer, J. Immunol. Meth. 61: 1–7.CrossRefGoogle Scholar
  4. Bumol, T. F., and Reisfeld, R. A., 1982, Unique glycoprotein–proteoglycon complex defined by monoclonal antibody on human melanoma cells, Proc. Natl. Acad. Sci. USA 79: 1245–1249.PubMedCrossRefGoogle Scholar
  5. Cote, R. J., Morrissey, D. M., Houghton, A. N., Beattie, E. J., Oettgen, H. F., and Old, L. J., 1983, Generation of human monoclonal antibodies reactive with cellular antigens, Proc. Natl. Acad. Sci. USA 80: 2026–2030.PubMedCrossRefGoogle Scholar
  6. Croce, C. A., Linnenbach, A., Hall, W., Steplewski, Z., and Koprowski, H., 1980, Production of human hybridomas secreting antibody to measles virus, Nature 228: 486–488.Google Scholar
  7. Doerfler, W., 1983, DNA methylation and gene activity, Annu. Rev. Biochem. 52: 93–124.PubMedCrossRefGoogle Scholar
  8. Feizi, T., 1984, Monoclonal antibodies reveal saccharine structures of glycoproteins and glycolipids as differentiation and tumor associated antigens, in: Genes and Antigens in Cancer Cells—The Monoclonal Antibody Approach ( G. Riethmuller, H. Koprowski, S. von Kleist, and K. Munk, eds.), Karger, Basel, pp. 51–63.Google Scholar
  9. Frost, P., and Kerbel, R. S., 1983, On a possible epigenetic mechanism(s) of tumor cell heterogeneity, Cancer Metastasis Rev. 2: 375–378.PubMedCrossRefGoogle Scholar
  10. Frost, P., Liteplo, R. G., Donaghue, T. P., and Kerbel, R. S., 1984, Selection of strongly immunogenic “turn-” variants from tumors at high frequency using 5-azacytidine, J. Exp. Med. 159: 1491–1501.PubMedCrossRefGoogle Scholar
  11. Gallagher, R., Collins, S., Trufillo, J., McGredie, K., Ahearn, M., Tsai, S., Metzgar, R., Anlakh, G., Ting, R., Ruscetti, F., and Gallo, R. C., 1979, Characterization of the continuous differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia, Blood 54: 713–733.PubMedGoogle Scholar
  12. Ginsburg, V., Fredman, P., and Magnani, J., 1984, Cancer associated carbohydrate antigens detected by monoclonal antibodies, in: Genes and Antigens in Cancer Cells—The Monoclonal Antibody Approach ( G. Riethmuller, H. Koprowski, S. von Kleist, and K. Munk, eds.), Karger, Basel, pp. 51–63.Google Scholar
  13. Hakomori, S., and Kannagi, R., 1983, Glycosphingolipids as tumor-associated and differentiation markers, J. Natl. Cancer Inst. 71: 231–251.PubMedGoogle Scholar
  14. Hansson, G. C., Karlsson, K.-A., Larson, G., McKibbin, J. M., Blaszcyzyk, M., Herlyn, M., Steplewsky, Z., and Koprowski, H., 1983, Mouse monoclonal antibodies against human cancer cell lines with specificities for blood group and related antigens. Characterization by antibody binding to glycosphingolipids in a chromatogram binding assay,/ Biol. Chem. 258: 4091–4097.Google Scholar
  15. Hawkes, R., Niday, E., and Gordon, J., 1982, A dot-immunobinding assay for monoclonal and other antibodies, Anal. Biochem. 1. 19: 142–147.Google Scholar
  16. Hellström, K. E., Hellström, I., Brown, J. P., Larson, S. M., Nepom, G. T., and Carosquillo, J. A., 1984, Three human melanoma-associated antigens and their possible clinical applications, in: Genes and Antigens in Cancer Cells—The Monoclonal Antibody Approach ( G. Riethmuller, H. Koprowski, S. von Kleist, and K. Munk, eds.), Karger, Basel, pp. 121–131.Google Scholar
  17. Heppner, G. H., 1984, Tumor heterogeneity, Cancer Res. 44: 2259–2265.PubMedGoogle Scholar
  18. Holliday, R., and Pough, J. E., 1975, DNA modification mechanisms and gene activity during development, Science 187: 226–232.PubMedCrossRefGoogle Scholar
  19. Houghton, A. N., Brooks, H., Cote, R. J., Taormina, M. C., Oettgen, H. F., and Old, L. J., 1983, Detection of cell surface and intracellular antigens by human monoclonal antibodies: Hybrid cell lines derived from lymphocytes of patients with malignant melanoma, J. Exp. Med. 158: 53–65.PubMedCrossRefGoogle Scholar
  20. Irie, R. F., Sze, L. L., and Saxton, R. E., 1982, Human antibody to OFA-I, a tumor antigen, produced in vitro by Epstein–Barr virus-transformed human B-lymphoid cell lines, Proc. Natl. Acad. Sci. USA 79: 5666–5670.PubMedCrossRefGoogle Scholar
  21. Kaplan, H. S., Olsson, L., and Raubitschek, A., 1982, Monoclonal human antibodies: A recent development with wide-ranging clinical potential, in: Monoclonal Antibodies in Clinical Medicine ( A. J. McMichael and J. W. Fabre, eds.), Academic Press, London, pp. 17–35.Google Scholar
  22. Kozbor, D., and Roder, J. C., 1983, The production of human monoclonal antibodies from human lymphocytes, Immunol. Today 4: 72–79.CrossRefGoogle Scholar
  23. Lane, D., and Koprowski, H., 1982, Molecular recognition and the future of monoclonal antibodies, Nature 296: 200–201.PubMedCrossRefGoogle Scholar
  24. Mitchell, M. S., and Oettgen, A. F. (eds.), 1983, Hybridomas in Cancer Diagnosis and Treatment, Raven Press, New York.Google Scholar
  25. Nilsson, K., Bennich, H., Johansson, G. S. O., and Pontén, J., 1970, Established immunoglobulin producing myeloma (IgE) and lymphoblastoid (IgG) cell lines from an IgE myeloma patient, Clin. Exp. Immunol. 7: 477–489.PubMedGoogle Scholar
  26. Old, L. J., Stockert, E., Bogse, E. A., and Kim, J. H., 1968, Antigenic modulation. Loss of TL antigen from cells exposed to TL antibody—Study of the phenomenon in vitro, J. Exp. Med. 127: 523–529.PubMedCrossRefGoogle Scholar
  27. Olsson, L., 1983, Phenotypic diversity in leukemia cell populations, Cancer Metastasis Rev. 2: 153163.Google Scholar
  28. Olsson, L., 1984, Human monoclonal antibodies: Methods of production and some aspects of their application in oncology, Med. Oncol. Tumor Pharmacother. 4: 235–246.Google Scholar
  29. Olsson, L., Andreasen, R. B., Ost, Ake, Christensen, B., and Biberfeld, P., 1984, Antibody-producing human—human hybridomas II. Derivation and characterization of an antibody specific for human leukemia cells, J. Exp. Med. 159: 537–551.PubMedCrossRefGoogle Scholar
  30. Olsson, L., Due, C., Diamant, M., 1985, Treatment of human cell lines with 5-azacytidine may result in profound alterations in clonogenicity and growth rate. J. Cell. Biol. 100: 508–513.PubMedCrossRefGoogle Scholar
  31. Olsson, L., and Forchhammer, J., 1984, Induction of the metastatic phenotype in a mouse tumor model by 5-azacytidine and characterization of an antigen associated with metastatic activity, Proc. Natl. Acad. Sci. USA 81: 3389–3393.PubMedCrossRefGoogle Scholar
  32. Olsson, L., and Kaplan, H. S., 1980, Human—human hybridomas producing monoclonal antibodies of predefined antigenic specificity, Proc. Natl. Acad. Sci. USA 77: 5429–5431.PubMedCrossRefGoogle Scholar
  33. Olsson, L., and Kaplan, H. S., 1983, Human—human monoclonal antibody-producing hybridomas. Technical aspects, Meth. Enzymol. 92: 3–16.PubMedCrossRefGoogle Scholar
  34. Olsson, L., Kronstr¢m, H., Cambon-de-Mouzon, A., Honsik, C. J., Brodin, T., and Jacobsen, B., 1983, Antibody-producing human—human hybridomas. I. Technical aspects, J. Immunol. Meth. 61: 17–32.Google Scholar
  35. Pettijohn, D., Henzl, M., and Price, C., 1984, Nuclear proteins which become part of the mitotic apparatus: A role in nuclear assembly?]. Cell Sci.,in press.Google Scholar
  36. Razin, A., and Riggs, A. D., 1980, DNA methylation and gene regulation, Science 210:604–610. Reading, C. L., 1982, Theory and methods for immunization in culture and monoclonal antibody production, J. Immunol. Meth. 53: 261–291.Google Scholar
  37. Riggs, A. D., and Jones, P. A., 1983, 5-Methylcytosine, gene regulation and cancer, Adv. Cancer Res. 40: 1–30.Google Scholar
  38. Ritz, J., Pesando, J. M., Notis-McConarty, J., and Schlossman, S. F., 1980, Modulation of human acute lymphoblastic leukemia antigen induced by monoclonal antibody in vitro, J. Immunol. 125: 1506–1514.PubMedGoogle Scholar
  39. Rosen, A., and Klein, G., 1983, UV-light-induced immunoglobulin heavy-chain class switch in a human lymphoblastoid cell line, Nature 306: 189–191.PubMedCrossRefGoogle Scholar
  40. Rosen, A., Persson, K., and Klein, G., 1983, Human monoclonal antibodies to a genus-specific chlamydial antigen produced by EBV-transformed B-cells, J. Immunol. 130: 2899–2902.PubMedGoogle Scholar
  41. Schlom, J., Wunderlich, D., and Teramoto, Y. A., 1980, Generation of human monoclonal antibodies reactive with human mammary carcinoma cells, Proc. Natl. Acad. Sci. USA 77: 6841–6845.PubMedCrossRefGoogle Scholar
  42. Sikora, K., Alderson, J., Philips, J., and Watson, J. V., 1982, Human hybridomas from malignant gliomas, Lancet I:11–14.Google Scholar
  43. Steinitz, M., Klein, G., Koskimies, S., and Kakela, 0., 1979, EB virus-induced cell lines producing specific antibody, Nature 269: 420–422.CrossRefGoogle Scholar
  44. Van Ness, J., Laemmli, U. K., and Pettijohn, D. E., 1984, Immunization in vitro and production of monoclonal antibodies specific to insoluble and weakly immunogenic proteins, Proc. Natl. Acad. Sci. USA 81: 7897–7901.PubMedCrossRefGoogle Scholar
  45. Watson, D. B., Burns, G. F., and Makay, I. R., 1983, In vitro growth of B-lymphocytes infiltrating human melanoma tissue by transformation with EBV: Evidence for secretion of anti-melanoma antibodies by some transformed cells, J. Immunol. 130: 2442–2447.Google Scholar
  46. Zurawski, V. R., Haber, E., and Black, P. M., 1978, Production of antibody to tetanus toxoid by continuous human lymphoblastoid cell lines, Science 119: 1439–1441.CrossRefGoogle Scholar
  47. Acton, R. T., Barstad, P. A., and Zuerner, R. K., 1979, Propagation and scaling-up of suspension culture, Meth. Enzymol. LVIII: 211–221.Google Scholar
  48. Chang, T. H., Steplewski, Z., and Koprowski, H., 1980, Production of monoclonal antibodies in serum-free medium, J. Immunol. Meth. 39: 369–375.CrossRefGoogle Scholar
  49. Erhlich, K. C., Stewart E., and Klein, E., 1978, Artificial capillary perfusion cell culture: Metabolic studies, In Vitro 14: 443–450.CrossRefGoogle Scholar
  50. Fazekas de St. Groth, S., 1983, Automated production of monoclonal antibodies in a cytostat, J. Immunol. Meth. 57: 121–136.CrossRefGoogle Scholar
  51. Feder, J., and Tolbert, W. R., 1983, Large scale cultivation of mammalian cells, Sci. Am. 248: 3643.Google Scholar
  52. Finter, N. B., and Fantes, K. H., 1980, The purity and safety of interferons prepared for clinical use: The case for lymphoblastoid interferon, In: Interferon II, I. Gessor, ed., Academic Press, New York, pp. 65–80.Google Scholar
  53. Girard, H. C., Sutcu, M., Erden, H., and Gurhan, I., 1980, Monolayer cultures of animal cells with the cyrogen equipped with tubes, Biotechnol. Bioeng. 22: 477–493.CrossRefGoogle Scholar
  54. Glacken, M. W., Fleischaker, R. J., and Sinskey, A. J., 1983, Mammalian cell culture: Engineering principles and scale-up, Trends Biotechnol. 1: 102–108.CrossRefGoogle Scholar
  55. Himmelfarb, P., Thayer, P. S., and Martin, H. E., 1969, Spin filter culture: The propagation of mammalian cells in suspension, Science 164: 555–557.PubMedCrossRefGoogle Scholar
  56. Hopkinson, J., 1982, Hollow Fiber Cell Culture: A Sleeping Giant Awakening, Amicon Literature, Amicon Corp., Lexington, Massachusetts.Google Scholar
  57. Iscove, N. N., and Melchers, 1978, Complete replacement of serum by albumin, transferrin, and soybean lipid in cultures of lipopolysaccharide-reactive B lymphocytes, J. Exp. Med. 147: 923933.Google Scholar
  58. Jarvis, A. P., and Grdina, T. A., 1983, Production of biologicals from microencapsulated living cells, Bio Techniques 1: 24–27.Google Scholar
  59. Kawamoto, T., Sato, J. D., Lo, A., McClure, D. B., and Sato, G. H., 1983, Development of a serum-free medium for growth of NS-1 mouse myeloma cells and its application to the isolation of NS-1 hybridomas, Anal. Biochem. 130: 445–453.PubMedCrossRefGoogle Scholar
  60. Knazek, R. A., Gullino, P. M., Kohler, P. O., and Dedrick, R. L., 1972, Cell culture on artificial capillaries: An approach to tissue culture in vitro, Science 178: 65–67.PubMedCrossRefGoogle Scholar
  61. Kruse, P. F., Jr., and Patterson, M. K. Jr., (eds.), Tissue Culture, Methods and Applications,Volume XXVII, Academic Press, New York, pp. 283–363.Google Scholar
  62. Lewis, C., Tolbert, W. R., and Feder, J., 1984, Large scale perfusion culture system for production of monoclonal antibodies, presented at Hybridoma Conference, San Diego, California.Google Scholar
  63. Lim, F., and Sun, A., 1980, Microencapsulated islets of bioartificial endocrine pancreas, Science 210: 908–910.PubMedCrossRefGoogle Scholar
  64. Littlefield, S. G., Gilligan, K. J., and Jarvis, A. P., 1983, Growth and monoclonal antibody production from rat x mouse hybridomas: A comparison of microcapsule culture with conventional suspension culture, presented at Hybridoma Conference, San Diego, California.Google Scholar
  65. Litwin, J., 1973, Titanium disks, In: Tissue Culture Methods and Applications, P. F. Kruse, Jr., and M. K. Patterson, Jr., eds., Academic Press, New York, Chapter 5.Google Scholar
  66. Lydersen, B. K., Pugh, G. G., Duncan, E. C., Overman, K. T., Johnson, D. M., and Sharma, B. P., 1983, Novel ceramic material for large scale cell culture, presented at Tissue Culture Association, 34th Annual Meeting, Orlando, Florida, June 12–16.Google Scholar
  67. Lynn, J. D., and Acton, R. T., 1975, Design of a large scale mammalian cell suspension culture facility, Biotechnol. Bioeng. XVII: 659–673.CrossRefGoogle Scholar
  68. McHugh, Y. E., Walthall, B. J., and Steimer, K. S., 1983, Serum-free growth of murine and human lymphoid and hybridoma cell lines, Biotechniques 1: 72–77.Google Scholar
  69. McLimans, W. F., 1979, Mass culture of mammalian cells, Meth. Enzymol. LVIII:194–211.CrossRefGoogle Scholar
  70. Murakami, H., Masui, H., Sato, G. H., Sueoka, N., Chow, T. P., and Kano-Sueoka, T., 1982, Growth of hybridoma cells in serum-free medium: Ethanolamine is an essential component, Proc. Natl. Acad. Sci. USA 79: 1158–1162.PubMedCrossRefGoogle Scholar
  71. Patterson, N. K., Jr., 1976, Perfusion and mass culture systems, Tiss. Culture Assoc. Manual 4: 243–249.CrossRefGoogle Scholar
  72. Pharmacia, 1981, Microcarrier Cell Culture: Principles and Methods, Pharmacia Fine Chemicals AB, Uppsala, Sweden.Google Scholar
  73. Pollard, R., and Khosrovi, B., 1978, Reactor design for fermentation of fragile tissue cells, Process Biochem. 78: 31–37.Google Scholar
  74. Quarles, J. M., Morris, N. G., and Leibovitz, A., 1980, Carcinoembryonic antigen production by human colorectal adenocarcinoma cells in matrix-perfusion culture, In Vitro 16: 113–118.PubMedCrossRefGoogle Scholar
  75. Reuveny, S., Mizrahi, A., Kotler, M., and Freeman, A., 1983, Factors affecting cell attachment, spreading and growth on derivatized microcarriers. I. Establishment of working system and effect of the type of the amino-charged groups, Biotechnol. Bioeng. 25: 469–480PubMedCrossRefGoogle Scholar
  76. Reuveny, S., Mizrahi, A., Kotler, M., and Freeman, A., 1983, Introduction of hydrophobic elements, Biotechnol. Bioeng. 25: 2969–2981.PubMedCrossRefGoogle Scholar
  77. Sato, G., Pardee, A. B., and Sirbasku, D. A. (eds.), 1982, Growth of Cells in Hormonally Defined Media, Parts A, B, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  78. Thayer, P. S., 1973, Spin filter device for suspension cultures, In: Tissue Culture, Methods and Applications, P. F. Kruse, Jr. and M. K. Patterson, Jr., eds., Academic Press, New York, pp. 345–351.Google Scholar
  79. Thilly, W. G., Barngrover, D., and Thomas, J. N., 1982, Microcarriers and the problem of high cell density culture, In: From Gene to Protein: Translation into Biotechnology, F. Ahmad, J. Schultz, E. E. Smith, and W. I. Whelan, eds., Academic Press, New York, pp. 75–103.Google Scholar
  80. Tolbert, W. R., and Feder, J., 1983, Large scale cell culture technology, Annu. Rep. Fermentation Processes 6: 35–74.Google Scholar
  81. Tolbert, W. R., Feder, J., and Kimes, R. C., 1981, Large scale rotating filter perfusion systems for high density growth of mammalian suspension cultures, In Vitro 17: 885–890.PubMedCrossRefGoogle Scholar
  82. Uittenbogaart, C. H., Cantor, Y., and Fahey, J. L., 1983. Growth of human malignant lymphoid cell lines in serum-free medium, In Vitro 19: 67–72.PubMedCrossRefGoogle Scholar
  83. Van Wezel, A. L., and Van der Velden-de Groot, C. A. M., 1978, Large scale cultivation of animal cells in microcarrier culture, Process Biochem. 78: 6–8.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Lennart Olsson
    • 1
  • Peter Brams
    • 1
  1. 1.Cancer Biology LaboratoryState University Hospital (Rigshospitalet)CopenhagenDenmark

Personalised recommendations