Advertisement

The Generation of Human Monoclonal Antibodies and Their Use in the Analysis of the Humoral Immune Response to Cancer

  • Richard J. Cote
  • Alan N. Houghton

Abstract

The discipline of cancer immunology can be defined as having two related but distinct aspects. The first is the search for antigens on tumor cells that might distinguish these cells from their normal counterparts, using immunologic methods. The second is the investigation of the ability of animals and humans to recognize and respond to their own tumors. The discovery that inbred strains of mice are able to recognize antigens expressed by chemically induced sarcomas (Gross, 1943; Foley, 1953; Prehn and Main, 1957) opened up both of these important areas of tumor immunology. Studies of cancer cells with heterologous antibodies, long thought to be the way in which antigens on tumors could best be studied (Bashford, 1913), have not, until quite recently, yielded much useful information. However, the use of mouse monoclonal antibodies as monovalent, heterologous probes has developed into a powerful approach to the serologic analysis of tumors, vastly increasing our knowledge about the antigenic phenotypes of cells (Dippold et al., 1980; Ueda et al., 1981; Papsidero et al., 1983). These reagents have already been applied to the histological diagnosis and definition of tumors, and to the localization and treatment of cancer in patients (Epenetos et al., 1982; Miller and Levy, 1981; Osborn and Weber, 1982; Houghton et al., 1985). Although the use of mouse monoclonal antibodies in vivo may be limited by their immunogenicity (Houghton et al., 1985; Miller et al., 1982), they have certainly secured a permanent niche in the armamentarium of the basic scientist, pathologist, and clinician interested in cancer.

Keywords

Light Chain Heavy Chain Human Lymphocyte Human Monoclonal Antibody Clonal Outgrowth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bashford, E. F., 1913, The constancy and variability of tumor cells during propagation, in: Transactions of the International Congress of Medicine, London, Section III, Part 2, p. 59.Google Scholar
  2. Carey, T. E., Takahashi, T., Resnick, L. A., Oettgen, H. F., and Old, L. J., 1976, Cell surface antigens of human malignant melanoma: Mixed hemadsorption assays for humoral immunity to cultured autologous melanoma cells, Proc. Natl. Acad. Sci. USA 73: 3278–3282.PubMedCrossRefGoogle Scholar
  3. Chiorrazzi, N., Wasserman, R. L., and Kunkel, H. G., 1982, Use of Epstein—Barr virus-transformed B cell lines for the generation of immunoglobulin-producing human B cell hybridomas, J. Exp. Med. 156: 930–935.CrossRefGoogle Scholar
  4. Cote, R. J., Morrissey, D. M., Houghton, A. N., Beattie, E. J., Oettgen, H. F., and Old, L. J., 1983, Generation of human monoclonal antibodies reactive with cellular antigens, Proc. Natl. Acad. Sci. USA 80: 2026–2030.PubMedCrossRefGoogle Scholar
  5. Cote, R. J., Houghton, A. N., Cordon-Cardo, C., Thomson, T. M., Morrissey, D. M., Oettgen, H. F., and Old, L. J., 1984, Immune response of cancer patients: Analysis with human monoclonal antibodies, Fed. Proc. 43: 1663 (abstract 1441).Google Scholar
  6. Crawford, D., Callard, R., Muggeridge, M., Mitchell, D., Zanders, E., and Beverley, P. C., 1983, Production of human monoclonal antibody to X31 influenza virus nucleoprotein, J. Gen. Virol 64: 697–700.PubMedCrossRefGoogle Scholar
  7. Croce, C. M., Linnenbach, A., Hall, W., Steplewski, Z., and Koprowski, H., 1980, Production of human hybridomas secreting antibodies to measles virus, Nature 288: 488–489.PubMedCrossRefGoogle Scholar
  8. Dippold, W. G., Lloyd, K. O., Li, L. T. C., Ikeda, H., Oettgen, H. F., and Old, L. J., 1980, Cell surface antigens of human malignant melanoma: Definition of six antigenic systems with mouse monoclonal antibodies, Proc. Natl. Acad. Sci. USA 77: 6114–6118.PubMedCrossRefGoogle Scholar
  9. Edwards, P. A. W., Smith, C. M., Neville, A. M., and O’Hare, M. J., 1982, A human—human hybridoma system based on a fast growing mutant of the ARH-77 plasma cell leukemia-derived line, Eur J. Immunol. 12: 641–648.PubMedCrossRefGoogle Scholar
  10. Epenetos, A. A., Canti, G., Taylor-Papadimitriou, J., Curling, M., and Bodmer, W. F., 1982, Use of two epithelium-specific monoclonal antibodies for diagnosis of malignancy in serous effu-sions, Lancet ii:1004–1006.Google Scholar
  11. Eremin, O., Coombs, R. R. A., Prospero, T. D., and Plumb, D., 1982, T-Lymphocyte and B-lymphocyte subpopulations infiltrating human mammary carcinomas, J. Natl. Cancer Inst. 69: 1–8.PubMedGoogle Scholar
  12. Foley, E. J., 1953, Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin, Cancer Res. 13: 835–837.PubMedGoogle Scholar
  13. Garret, T. J., Takahashi, T., Clarkson, B. D., and Old, L. J., 1977, Detection of antibody to autologous human leukemia cells by immune adherence assays, Proc. Natl. Acad. Sci. USA 74: 4587–4590.CrossRefGoogle Scholar
  14. Glassy, M. C., Handley, H. H., Hagiwara, H., and Royston, I., 1983, UC729–6, a human lymphoblastoid B-cell line useful for generating antibody-secreting human—human hybridomas, Proc. Natl. Acad. Sci. USA 80: 6327–6331.PubMedCrossRefGoogle Scholar
  15. Gross, L., 1943, Intradermal immunization of C3H mice against a sarcoma that originated in an animal of the same line, Cancer Res. 3: 326–333.Google Scholar
  16. Houghton, A. N., Brooks, H., Cote, R. J., Taormina, M. C., Oettgen, H. F., and Old, L. J., 1983, Detection of cellular antigens by human monoclonal antibodies, J. Exp. Med. 158: 53–65.PubMedCrossRefGoogle Scholar
  17. Houghton, A. N., Mintzer, D., Cordon-Cardo, C., Welt, S., Fliegel, B., Vadhan, S., Carswell, E., Melamed, M. R., Oettgen, H. F., and Old, L. J., 1985, Mouse monoclonal antibody detecting GD3 ganglioside: A phase I trial in patients with malignant melanoma, Proc. Natl. Acad. Sci. USA 82: 1242–1246.PubMedCrossRefGoogle Scholar
  18. Hsu, S.-M., Raine, L., and Nayak, R. N., 1981, Medullary carcinoma of breast: An immunohistochemical study of its lymphoid stoma, Cancer 48: 1368–1376.PubMedCrossRefGoogle Scholar
  19. Irie, R. F., Sze, L. L., and Saxton, R. E., 1982, Human antibody to OFA-I, a tumor antigen, produced in vitro by Epstein—Barr virus-transformed human B-lymphoid cell lines, Proc. Natl. Acad. Sci. USA 79: 5666–5670.PubMedCrossRefGoogle Scholar
  20. Karpas, A., Fischer, P., and Swirsky, D., 1982, Human plasmacytoma with an unusual karytope growing in vitro and producing light chain immunoglobulin, Lancet 1: 931–933.PubMedCrossRefGoogle Scholar
  21. Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 236: 495–497.CrossRefGoogle Scholar
  22. Köhler, G., and Milstein, C., 1976, Derivation of specific antibody-producing tissue culture and tumor cell lines by cell fusion, Eur. J. Immunol. 6: 511–519.PubMedCrossRefGoogle Scholar
  23. Koskimies, S., 1980, Human lymphoblastoid cell line producing specific antibody against Rh antigen D, Scand. J. Immunol. 11: 73–77.PubMedCrossRefGoogle Scholar
  24. Kozbor, D., and Roder, J. C., 1981, Requirements for the establishment of high-titred human monoclonal antibodies against tetanus toxoid using the Epstein—Barr virus technique, J. Immunol. 127: 1275–1280.PubMedGoogle Scholar
  25. Larrick, J. W., Truitt, K. E., Raubitschek, A. A., Senyk, G., and Wang, J. C., 1983, Characterization of human hybridomas secreting antibody to tetanus toxoid, Proc. Natl. Acad. Sci. USA 80: 6376–6380.PubMedCrossRefGoogle Scholar
  26. Miller, R. A., and Levy, R., 1981, Response of cutaneous T cell lymphoma to therapy with hybridoma monoclonal antibody, Lancet 11: 226–230.CrossRefGoogle Scholar
  27. Miller, R. A., Maloney, D., Warnke, R., McDougall, I. R., Wood, G., Kawakami, T., Dilley, J., Goris, M. L., and Levy, R., 1982, Considerations for treatment with hybridoma antibodies, in: Hybridomas in Cancer Diagnosis and Treatment ( M. S. Mitchell and H. F. Oettgen, eds.), Raven Press, New York, pp. 133–145.Google Scholar
  28. Nilsson, K., Bennich, H., Johansson, S. G. O., and Pontén, J., 1970, Established immunoglobulin producing myeloma (IgE) and lymphoblastoid (IgG) cell lines from an IgE myeloma patient, Clin. Exp. Immunol. 7: 477–489.PubMedGoogle Scholar
  29. Nowinski, R. C., Berglund, C., Lane, J., Lostrom, M., Bernstein, I., Young, S., Hill, L., and Cooney, M., 1980, Human monoclonal antibody against Forssman antigen, Science 210: 537–539.PubMedCrossRefGoogle Scholar
  30. O’Hare, M. J., Smith, C. M., and Edwards, P. A. W., 1982, A new human hybridoma system (LICR-LON-HMy2) and its use in the production of human monoclonal antibodies, in: Protides of Biological Fluids, Colloquium 30 ( H. Peeters, ed.), Pergamon Press, Oxford, pp. 265–268.Google Scholar
  31. Olsson, L., and Kaplan, H. S., 1980, Human—human hybridomas producing monoclonal anti-bodies of predefined antigenic specificity, Proc. Natl. Acad., Sci. USA 77: 5429–5431CrossRefGoogle Scholar
  32. Osborn, M., and Weber, K., 1982, Intermediate filaments: Cell-type specific markers in differ-entiation and pathology, Cell 31: 303–306.PubMedCrossRefGoogle Scholar
  33. Papsidero, L. D., Croghan, G. A., O’Connell, M. S., Valenzuela, L. A., Nemoto, T., and Chu, T. M., 1983, Monoclonal antibodies (F36/22 and M7/105) to human breast carcinoma, Cancer Res. 43: 1741–1747.PubMedGoogle Scholar
  34. Pfreundschuh, M., Shiku, H., Takahashi, T., Ueda, R., Ransohoff, J., Oettgen, H. F., and Old, L. J., 1978, Serological analysis of cell surface antigens of malignant human brain tumors, Proc. Natl. Acad. Sci. USA 75: 5122–5126.PubMedCrossRefGoogle Scholar
  35. Prehn, R. T., and Main, J. M., 1957, Immunity to methylcholanthrene-induced sarcomas, J. Natl. Cancer Inst. 18: 769–778.PubMedGoogle Scholar
  36. Schlom, J., Wunderlich, D., and Teramoto, Y. A., 1980, Generation of human monoclonal antibodies reactive with human mammary carcinoma cells, Proc. Natl. Acad. Sci. USA 77: 6841–6845.PubMedCrossRefGoogle Scholar
  37. Sikora, K., Alderson, T., Phillips, J., and Watson, J. V., 1982, Human hybridomas from malignant gliomas, Lancet ii:11–14.Google Scholar
  38. Steinitz, M., Klein, G., Koskimies, S., and Makel, 0., 1977, EB virus-induced B lymphocyte cell lines producing specific antibody, Nature 269: 420–422.PubMedCrossRefGoogle Scholar
  39. Thomson, T. M., Cote, R. J., Houghton, A. N., Oettgen, H. F., and Old, L. J., 1984, Human monoclonal antibodies recognizing intermediate filament (IF) molecules, Fed. Proc. 43: 1513Google Scholar
  40. Ueda, R., Ogata, S., Morrissey, D. M., Finstad, C. L., Szkudlarek, J., Whitmore, W. F., Oettgen, H. F., Lloyd, K. O., and Old, L. J., 1981, Cell surface antigens of human renal cancer defined by mouse monoclonal antibodies: Identification of tissue specific kidney glycoproteins, Proc. Natl. Acad. Sci. USA 78: 5122–5126.PubMedCrossRefGoogle Scholar
  41. Zurawski, V. R., Haber, E., and Black, P. H., 1978, Continuous human lymphoblastoid cell lines, Science 199: 1439–1441.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Richard J. Cote
    • 1
  • Alan N. Houghton
    • 1
  1. 1.Memorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations