Cell-Driven Viral Transformation

  • Anthony W. Siadak
  • Mark E. Lostrom


Since the advent of hybridoma technology, one of the most provocative applications for monoclonal antibodies has been immunotherapy. Early reports of experiments performed in mice suggested that monoclonal antibody therapy was beneficial against murine T-cell lymphoma (Bernstein et al., 1980) and that it might be useful to deliver potent toxins to undesirable cells in vivo [reviewed in Moller (1982)]. Murine monoclonals have more recently been administered without major adverse reactions to immunocompromised human patients with leukemia or lymphoma (Levy and Miller, 1983). Results from these studies have shown, however, that the therapeutic effects of these reagents were difficult to maintain, due in large part to a host response to mouse immunoglobulin (Ig) which resulted in accelerated clearance of successive doses (Levy and Miller, 1983). This observation together with the goal of prophylactically and therapeutically treating a broader group of human patients have provided incentive to develop human monoclonal technology.


Human Monoclonal Antibody Lymphoblastoid Cell Line Proliferate Cell Line Limit Dilution Analysis Spend Culture Supernatant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andriole, V. T., 1978, Pseudomonas bacteremia: Can antibiotic therapy improve survival, J. Lab. Clin. Med. 94: 196–200.Google Scholar
  2. Batteiger, B., Newhall, W.J., and Jones, R. B., 1982, The use of Tween 20 as a blocking agent in the immunological detection of proteins transferred to nitrocellulose membranes, J. Immunol. Meth. 55: 297–307.CrossRefGoogle Scholar
  3. Bernstein, I. D., Tam, M. R., and Nowinski, R. C., 1980, Mouse leukemia: Therapy with monoclonal antibodies against a thymus differentiation antigen, Science 207: 68–71.PubMedCrossRefGoogle Scholar
  4. Bjornson, A. B., and Michael, J. G., 1974, Factors in human serum promoting phagocytosis of Pseudomonas aeruginosa. I. Interaction of opsonins with the bacterium, J. Infect. Dis. 130(Suppl):S 119–S 125.CrossRefGoogle Scholar
  5. Boyum, A., 1968, Isolation of mononuclear cells and granulocytes from human blood, Scand. J. Clin. Lab. Invest. 21 (Suppl. 97): 77–89.Google Scholar
  6. Brokopp, C. D., and Farmer, J. J., III, 1979, Typing methods for Pseudomonas aeruginosa, in: Pseudomonas aeruginosa: Clinical Manifestations of Infection and Current Therapy ( R. G. Doggett, ed.), Academic Press, New York, Chapter 5.Google Scholar
  7. Brown, N. A., and Miller, G., 1982, Immunoglobulin expression by human B lymphocytes clonally transformed by Epstein—Barr virus, J. Immunol. 128: 24–29.PubMedGoogle Scholar
  8. Engvall, E., 1977, Quantitative enzyme immunoassay (ELISA) in microbiology, Med. Biol. 55: 193–200.PubMedGoogle Scholar
  9. Ernberg, I., and Klein G., 1979, EB virus-induced antigens, in: The Epstein-Barr Virus ( M. A. Epstein and B. G. Achong, eds.), Springer, New York, Chapter 3.Google Scholar
  10. Fisher, M. W., Devlin, H. B., and Gnabasik, F. J., 1969, New immunotype scheme for Pseudomonas aeruginosa based on protective antigens, J. Bacteriol. 98: 835–836.PubMedGoogle Scholar
  11. Goldman, R. C., and Leive, L., 1980, Heterogeneity of antigenic-side-chain length in lipopolysaccharide from Escherichia coli 0111 and Salmonella typhimurium LT2, Eur. J. Biochem. 107: 145–153.PubMedCrossRefGoogle Scholar
  12. Hancock, R. E. W., and Carey, A. M., 1979, Outer membrane of Pseudomonas aeruginosa: Heat and 2-mercaptoethanol-modifiable proteins, J. Bacteriol. 140: 902–910.PubMedGoogle Scholar
  13. Hanessian, S., Regan, W., Watson, D., and Haskell, T. H., 1971, Isolation and characterization of antigenic components of a new heptavalent Pseudomonas vaccine, Nature New Biol. 229: 209–210.PubMedGoogle Scholar
  14. Hoffman, G. J., Lazarowitz, S. G., and Hayward, S. D., 1980, Monoclonal antibody against a 250,000-dalton glycoprotein of Epstein—Barr virus identifies a membrane antigen and a neutralizing antigen, Proc. Natl. Acad. Sci. USA 77: 2979–2983.PubMedCrossRefGoogle Scholar
  15. Kennett, R. H., 1979, Cell fusion, Meth. Enzymol. 58: 345–359.PubMedCrossRefGoogle Scholar
  16. Koskimies, S., 1980, Human lymphoblastoid cell line producing specific antibody against Rh antigen D, Scand. J. Immunol. 11: 73–77.PubMedCrossRefGoogle Scholar
  17. Kozbor, D., and Roder, J. C., 1983, The production of monoclonal antibodies from human lymphocytes, Immunol. Today 4: 72–79.CrossRefGoogle Scholar
  18. Laemmli, U. K., 1970, Cleavage of structural protein during the assembly of the head of bacteriophage T4, Nature 227: 680–685.PubMedCrossRefGoogle Scholar
  19. Larrick, J. W., and Buck, D. W., 1984, Practical aspects of human monoclonal antibody production, Bio Techniques 2: 6–14.Google Scholar
  20. Levy, R., and Miller, R. A., 1983, Tumor therapy with monoclonal antibodies, Fed. Proc. 42: 2650–2656.PubMedGoogle Scholar
  21. Littlefield, J. W., 1964, Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants, Science 145: 709–710.PubMedCrossRefGoogle Scholar
  22. Madsen, M., and Johnson, H. E., 1979, A methodological study of E-rosette formation using AET treated sheep red blood cells, J. Immunol. Meth. 27: 61–74.CrossRefGoogle Scholar
  23. Martinez-Maza, O., and Britton, S., 1983, Frequencies of the separate human B cell subsets activatable to Ig secretion by Epstein—Barr virus and pokeweed mitogen, J. Exp. Med. 157: 1808–1814.PubMedCrossRefGoogle Scholar
  24. Miller, G., and Lipman, M., 1973, Comparison of the yield of infectious virus from clones of human and simian lymphoblastoid lines transformed by Epstein—Barr virus, J. Exp. Med. 138: 1398–1412.PubMedCrossRefGoogle Scholar
  25. Moller, G. (ed.), 1982, Antibody Carriers of Drugs and Toxins in Tumor Therapy, Immunological Reviews, Volume 62, Munksgaard, Copenhagen.Google Scholar
  26. Nilsson, K., and Klein, G., 1982, Phenotypic and cytogenetic characteristics of human B-lymphoid cell lines and their relevance for the etiology of Burkitt’s lymphoma, Adv. Cancer Res. 37: 319–380.PubMedCrossRefGoogle Scholar
  27. Pavla, E. T., and Makela, P. H., 1980, Lipopolysaccharide heterogeneity in Salmonella typhimurium analyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, Eur. J. Biochem. 107: 137–143.CrossRefGoogle Scholar
  28. Pollack, M., 1979, Antibody-mediated immunity in Pseudomonas disease and its clinical application, in: Immunoglobulins: Characteristics and Uses of Intravenous Preparations ( B. M. Alving and J. S. Finlayson, eds.), U.S. Department of Health and Human Services, Washington, D.C., pp. 73–79.Google Scholar
  29. Siadak, A. W., and Nowinski, R. C., 1981, Thy-2: A murine thymocyte-brain alloantigen controlled by a gene linked to the major histocompatibility complex, Immunogenetics 12: 45–58.PubMedCrossRefGoogle Scholar
  30. Stein, L. D., and Sigal, N. H., 1983, Limiting dilution analysis of Epstein—Barr virus-induced immunoglobulin production, Cell. Immunol. 79: 309–319.PubMedCrossRefGoogle Scholar
  31. Stein, L. D., Ledgley, C. J., and Sigal, N. H., 1983, Patterns of isotype commitment in human B cells: Limiting dilution analysis of Epstein—Barr virus-infected cells, J. Immunol. 130: 1640–1645.PubMedGoogle Scholar
  32. Steinitz, M., Klein, G., Koskimies, S., and Makel, O., 1977, EB virus-induced B lymphocyte cell lines producing specific antibody, Nature 269: 420–422.PubMedCrossRefGoogle Scholar
  33. Tam, M. R., Buchanan, T. M., Sandstrom, E. G., Holmes, K. K., Knapp, J. S., Siadak, A. W., and Nowinski, R. C., 1982, Serological classification of Neisseria gonorrhoeae with monoclonal antibodies, Infect. Immunol. 36: 1042–1053.Google Scholar
  34. Towbin, H., Staehelin, T., and Gordon, J., 1979, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications, Proc. Natl. Acad. Sci. USA 76: 4350–4354.PubMedCrossRefGoogle Scholar
  35. Van Furth, R., and van Zwet, T. L., 1973, In vitro determination of phagocytosis and intracellular killing by polymorphonuclear and mononuclear phagocytes, in: Handbook of Experimental Immunology, Volume 2, 2nd ed. ( D. M. Weir, ed.), Blackwell, Oxford, Chapter 36.Google Scholar
  36. Westphal, O., Luderitz, O., and Bister, F., 1952, Über die Extraktion von Bakterien mit Phenol/Wasser, Z. Naturforsch. 79: 148–155.Google Scholar
  37. Westphal, O., Jann, K., and Himmelspach, K., 1983, Chemistry and immunochemistry of bacte- rial lipopolysaccharides as cell wall antigens and endotoxins, Progr. Allergy 33: 9–39.Google Scholar
  38. Winger, L., Winger, C., Shastry, P., Russell, A., and Longenecker, M., 1983, Efficient generation in vitro, from human peripheral blood cells, of monoclonal Epstein—Barr virus transformants producing specificity antibody to a variety of antigens without prior deliberate immunization, Proc. Natl. Acad. Sci. USA 80: 4484–4488.PubMedCrossRefGoogle Scholar
  39. Yarchoan, R., Tosato, G., Blaese, R. M., Simon, R. M., and Nelson, D. L., 1983, Limiting dilution analysis of Epstein-Barr virus-induced immunoglobulin production by human B cells, J. Exp. Med. 157: 1–14.PubMedCrossRefGoogle Scholar
  40. Young, L. S., 1974, Role of antibody in infections due to Pseudomonas aeruginosa, J. Infect. Dis. 130 (Suppl.): S111 - S118.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Anthony W. Siadak
    • 1
  • Mark E. Lostrom
    • 1
  1. 1.Genetic SystemsSeattleUSA

Personalised recommendations