Advertisement

Human Hybridomas and Monoclonal Antibodies

The Biology of Cell Fusion
  • Jerry W. Shay

Abstract

In this review I will cover, from a cell biologist’s perspective, the biology of cell fusion and how the information derived from the field may be applicable to the production of human monoclonal antibodies. I will describe the development of the hybridoma technology, the advantages and disadvantages of making and using monoclonal antibodies, the methods and limitations of making human monoclonal antibodies, the freezing and thawing of hybridomas, and end with a discussion of chromosome segregation in cell hybrids.

Keywords

Spleen Cell Myeloma Cell Thymidine Kinase Cell Fusion Human Monoclonal Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barski, G., Sorieul, S., and Cornefert, F., 1960, Production dans des cultures in vitro de deux souches cellulaires en association, de cellules de caractere “hybride,” C. R. Acad. Sci. Paris 251: 1825–1827.Google Scholar
  2. Brodin, T., Olsson, L., and Sjogren, H., 1983, Cloning of human hybridoma, myeloma and lymphoma cell lines using enriched human monocytes as feeder layer, J. Immunol. Meth. 60: 1–7.CrossRefGoogle Scholar
  3. Buttin, G., LeGuern, G., Phalente, L., Lin, E. C. C., Medrano, L., and Cazenave, P. A., 1978, Production of hybrid lines secreting monoclonal anti-idiotypic antibodies by cell fusion on membrane filters, in: Lymphocyte Hybridoma ( I. Melchers, M. Potter, and N. L. Warner, eds.), Springer, Berlin, pp. 26–32.Google Scholar
  4. Carrel, A., 1912, On the permanent life of tissues outside the organism, J. Exp. Med. 15: 516–528PubMedCrossRefGoogle Scholar
  5. Clark, M. A., and Shay, J. W., 1978, Scanning electron microscopic observation on the mechanism of somatic cell fusion using polyethylene glycol, in: Scanning Electron Microscopy11978 (O. Johari and I. Corvin, eds.), Volume II, Chicago, Illinois, pp. 327–332.Google Scholar
  6. Clark, M. A., and Shay, J. W., 1982, Long-lived cytoplasmic factors that suppress adrenal steroidogenesis, Proc. Natl Acad. Sci. USA 79: 1144–1148.PubMedCrossRefGoogle Scholar
  7. Clark, S. A., Stimson, W. H., Williamson, A. R., and Dick, H. M., 1981, Human hybridoma cell lines; A novel method of production, J. Supramol. Struct. Cell Biochem. (Suppl.) 5: 100a.Google Scholar
  8. Cotton, R. G. H., and Milstein, C., 1973, Fusion of two immunoglobulin-producing myeloma cells, Nature 244: 42–43.PubMedCrossRefGoogle Scholar
  9. Croce, C. M., Linnenbach, A., Hall, W., Steplewski, Z., and Koprowski, H., 1980, Production of human hybridomas secreting antibodies to measles virus, Nature 288: 488–489.PubMedCrossRefGoogle Scholar
  10. Davidson, R. L., and Ephrussi, B., 1965, A selective system for the isolation of hybrids between L cells and normal cells, Nature 205: 1170–1171.CrossRefGoogle Scholar
  11. Davidson, R. L., and Gerald, P. S., 1976, Improved techniques for the induction of mammalian cell hybridization by polyethylene glycol, Somat. Cell Genet. 2: 165–176.PubMedCrossRefGoogle Scholar
  12. Davidson, R. L., O’Malley, K. A., and Wheeler, T. B., 1976, Polyethylene glycol-induced mammalian cell hybridization: Effect of polyethylene glycol molecular weight and concentration, Somat. Cell Genet. 2: 271–280.PubMedCrossRefGoogle Scholar
  13. Earle, W. R., Schilling, E. L., Stark, T. H., Straus, N. P., Brown, M. F., and Shelton, E., 1943, Production of malignancy in vitro. IV. The mouse fibroblast cultures and changes seen in the living cell, J. Natl. Cancer Inst. 4: 165–212.Google Scholar
  14. Edwards, P. A. W., Smith, C. M., Neville, A. M., and O’Hare, M. J., 1982, A human/human hybridoma system based on a fast growing mutant of the ARH-77 plasma cell leukemia derived line, Eur. J. Immunol. 12: 641–648.PubMedCrossRefGoogle Scholar
  15. Ehrlich, P. H., Moyle, W. R., Moustafa, Z. A., and Canfield, R. E., 1982, Mixing two monoclonal antibodies yields enhanced affinity for antigen, J. Immunol. 128: 2709–2715.PubMedGoogle Scholar
  16. Ehrlich, P. H., Moyle, W. R., and Moustafa, Z. A., 1983, Further characterization of cooperative interactions of monoclonal antibodies, J. Immunol. 131: 1906–1912.PubMedGoogle Scholar
  17. Ephrussi, B., and Weiss, M. C., 1965, Interspecific hybridization of somatic cells, Proc. Natl. Acad. Sci. USA 53: 1040–1042.PubMedCrossRefGoogle Scholar
  18. Franklin, R. M., 1982, Microcomputer inventory systems for stored cell line, J. Immunol. Meth. 54: 141–157.CrossRefGoogle Scholar
  19. Gefter, M. C., Margulies, D. H., and Scharff, M. D., 1977, A simple method for polyethylene glycol promoted hybridization of mouse myeloma cells, Somat. Cell Genet. 2: 231.CrossRefGoogle Scholar
  20. Gey, G. O., Coffman, W. D., and Kubicek, M. T., 1952, Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium, Cancer Res. 12: 364–365.Google Scholar
  21. Harris, H., and Watkins, J. F., 1965, Hybrid cells derived from mouse and man: Artificial heterokaryons of mammalian cells from different species, Nature 205: 640–646.PubMedCrossRefGoogle Scholar
  22. Harrison, R. G., 1907, Observations on the living developing nerve fiber, Proc. Soc. Exp. Biol. Med. 4: 140–143.Google Scholar
  23. Hartwell, L. W., Bolognino, M., Bidlack, J. M., Knapp, R. J., and Lord, E. M., 1984, A freezing method for cell fusions to distribute and reduce labor and permit more thorough early evaluation of hybridomas, J. Immunol. Meth. 66: 59–67.CrossRefGoogle Scholar
  24. Herzenberg, L. A., Herzenberg, L. A., and Milstein, C., 1978, Cell hybrids of myelomas with antibody forming cells and T-lymphomas with T cells, in: Handbook of Experimental Immunology, 3rd ed. (Weir, D. M., ed.), F. A. Davis, pp. 25. 1–25. 7.Google Scholar
  25. Jongkind, J. F., and Verkerk, A., 1982, Nonselective isolation of fibroblast heterokaryons, hybrids and cybrids by flow sorting, in: Techniques in Somatic Cell Genetics U. W. Shay, ed.), Plenum Press, New York, pp. 81–100.Google Scholar
  26. Jongkind, J. F., Verkerk, A., and Tanke, H., 1979, Isolation of human fibroblast heterokaryons with two-color flow sorting (FACS II), Exp. Cell Res. 120: 444–448.PubMedCrossRefGoogle Scholar
  27. Keeler, P. M., Person, S., and Snipes, S., 1977, A fluorescence enhancement assay of cell fusion, J. Cell Sci. 28: 167–177.Google Scholar
  28. Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256: 495–497.PubMedCrossRefGoogle Scholar
  29. Larrick, J. W., and Buck, D. W., 1984, Practical aspects of human monoclonal antibody production, Bio Techniques 1:6–14.Google Scholar
  30. Lee, V. M.Y., Page, C. D., Wu, H.-L., and Schlaepfer, W. W., 1984, Monoclonal antibodies to gel-excised glial filament protein and their reactivities with other intermediate filament proteins, J. Neurochem. 42: 25–32.PubMedCrossRefGoogle Scholar
  31. Levy, R., and Miller, R. A., 1983, Tumor therapy with monoclonal antibodies, Fed. Proc. 42: 2650–2656.PubMedGoogle Scholar
  32. Littlefield, J. W., 1964, Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants, Science 145: 709–710.PubMedCrossRefGoogle Scholar
  33. Mercer, W. E., and Schlegel, R. A., 1979, Phytohemagglutinin enhancement of cell fusion reduces polyethylene glycol toxicity, Exp. Cell Res. 120: 417–421.PubMedCrossRefGoogle Scholar
  34. Miller, R. A., Oseroff, A. R., Stratte, P. T., and Levy, R., 1983, Monoclonal antibody therapeutic trials in seven patients with T-cell lymphoma, Blood 62: 989–995.Google Scholar
  35. Milstein, C., and Lennox, E., 1980, The use of monoclonal antibody technique in the study of developing cell surfaces, Curr. Top. Dev. Biol. 14: 1–32.PubMedCrossRefGoogle Scholar
  36. Norwood, T. H., Zeigler, C. J., and Martin, G. M., 1976, Dimethyl sulfoxide enhances polyethylene glycol-mediated somatic cell fusion, Somat. Cell Genet. 2: 263–270.PubMedCrossRefGoogle Scholar
  37. Nose, M., and Wigzeil, H., 1983, Biological significance of carbohydrate chains on monoclonal antibodies, Proc. Natl. Acad. Sci. USA 80: 6632–6636.PubMedCrossRefGoogle Scholar
  38. Ochi, A., Hawley, R. G., Hawley, T., Shirlman, M. J., Trauecker, A., Kohler, G., and Hozumi, N., 1983, Functional immunoglobulin M production after transfection of cloned immunoglobulin heavy and light chain genes into lymphoid cells, Proc. Natl. Acad. Sci. USA 80: 6351–6355.PubMedCrossRefGoogle Scholar
  39. Oi, V. T., and Herzenberg, L. A., 1980, Immunoglobulin-producing hybrid cell lines, in: Selected Methods in Cellular Immunology ( B. B. Mishell and S. M. Shiigi, eds.), Freeman, San Francisco, pp. 351–372.Google Scholar
  40. Okada, Y., and Murayama, F., 1965, Multinucleated giant cell formation by fusion between cells of two different strains, Exp. Cell Res. 40: 154–158.PubMedCrossRefGoogle Scholar
  41. Okada, Y., and Tadokoro, J., 1962, Analysis of giant polynuclear cell formation caused by HVJ virus from Ehrlich’s tumor cells. II. Quantitative analysis of giant polynuclear cell formation, Exp. Cell Res. 26: 108–118.PubMedCrossRefGoogle Scholar
  42. Olsson, L., and Kaplan, H. S., 1980, Human/human hybridomas producing monoclonal antibodies of predefined antigenic specificity, Proc. Natl Acad. Sci. USA 77: 5429–5431.PubMedCrossRefGoogle Scholar
  43. Olsson, L., Kronstrom, H., Cambon-de Mouzon, A., Honsik, C., Brodin, T., and Jakobsen, B., 1983, Antibody producing human/human hybridomas. I. Technical aspects, J. Immunol. Meth. 61: 17–32.CrossRefGoogle Scholar
  44. Payne, M. R., 1983, Monoclonal antibodies to the contractile proteins, in: Cell and Muscle Motility (R. M. Dowben and J. W. Shay, eds.), Plenum Press, New York, pp. 137–177.Google Scholar
  45. Pontecorvo, G., 1975, Production of mammalian somatic cell hybrids by means of polyethylene glycol treatment, Somat. Cell Genet. 1: 397–400.PubMedCrossRefGoogle Scholar
  46. Potter, M., and Boyce, C. R., 1962, Induction of plasma neoplasms in strain BALB/c mice with mineral oil and mineral oil adjuvants, Nature 193: 1086–1087.PubMedCrossRefGoogle Scholar
  47. Pravtcheva, D. M., and Ruddle, F. H., 1983, Normal X chromosome induced reversion in the direction of chromosome segregation in mouse—Chinese hamster somatic cell hybrids, Exp. Cell Res. 148: 265–272.PubMedCrossRefGoogle Scholar
  48. Schneiderman, S., Farber, J. L., and Baserga, R., 1979, A simple method for decreasing the toxicity of polyethylene glycol in mammalian cell hybridization, Somat. Cell Genet. 5: 263.PubMedCrossRefGoogle Scholar
  49. Schwaber, J., and Cohen, E. P., 1973, Human/mouse somatic cell hybrid clone secreting immunoglobulin of both parental types, Nature 244: 444–447.PubMedCrossRefGoogle Scholar
  50. Springer, T. A., 1981, Monoclonal antibody analysis of complex biological systems, J. Biol. Chem. 256: 3833–3839.PubMedGoogle Scholar
  51. Taggart, R. T., and Samloff, I. M., 1983, Stable antibody-producing murine hybridomas, Science 219: 1228–1230.PubMedCrossRefGoogle Scholar
  52. Walker, C., and Shay, J. W., 1983, Effect of mitochondrial dosage on transfer of chloramphenicol resistance, Somat. Cell Genet. 9: 469–476.PubMedCrossRefGoogle Scholar
  53. Weiss, M. C., and Green, H., 1967, Human—mouse hybrid cell lines containing partial complements of human chromosomes and functional human genes, Proc. Natl Acad. Sci. USA 58: 1104–1111.PubMedCrossRefGoogle Scholar
  54. Winger, L., Winger, C., Shastry, P., Russell, A., and Longnecker, M., 1983, Efficient generation in vitro, from human peripheral blood cell, of monoclonal Epstein—Barr virus transformants producing specific antibodies to a variety of antigens without prior deliberate immunization, Proc. Natl. Acad. Sci. USA 80: 4484–4488.Google Scholar
  55. Wright, W. E., 1978, The isolation of heterokaryons and hybrids by a selective system using irreversible biochemical inhibitors, Exp. Cell Res. 112: 395–407.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Jerry W. Shay
    • 1
  1. 1.Department of Cell BiologyUniversity of Texas Health Science Center at DallasDallasUSA

Personalised recommendations