Distinct Sulfidopeptide Leukotriene Receptors

  • Barbara J. Ballermann
  • Tak H. Lee
  • Robert A. Lewis
  • K. Frank Austen
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


The oxidative metabolism of arachidonic acid by 5-lipoxygenase to form 5-hydro-peroxy-6-trans8-cis-eicosatetraenoic acid (5-HPETE) is followed by enzymatic conversion of 5-HPETE to 5,6-oxido-7,9-trans-ll,14-cis-eicosatetraenoic acid (LTA4). An epoxide hydrolase converts LTA4 to 5S,12R-dmydroxy-6,14-cis-8,10-trans-eicosatetraenoic acid (LTB4), whereas a glutathione-S-transferase adducts glu-tathione to yield 5S-hydroxy-6R-S-gluta.thionyl-7,9-trans-11.14-cis-eicossitrae-noic acid (LTC4). Sequential cleavages by γ-glutamyltranspeptidase of glutamic acid and by a dipeptidase of glycine form 5S-hydroxy-6R-S-cysteinylglycyl-7,9-trans-11 1,14-cis-eicosatetraenoic acid (LTD4) and 5S-hydroxy-6R-S-cysteinyl-7,9-trans-11,14-cis-eicosatetraenoic acid (LTE4), respectively. Leukotrienes C4, D4, and E4 are generically described as sulfidopeptide leukotrienes and constitute the activity previously termed slow reacting substance of anaphylaxis (Samuelsson, 1983; Lewis and Austen, 1984). The evidence indicating that the sulfidopeptide leukotrienes exert their physiological effects through interaction with several distinct receptors includes their differential functional activities on different tissues, the differential effects of pharmacological inhibitors on the agonist effects of the three sulfidopeptide leukotrienes, different receptor characteristics defined by radioligand binding studies, and apparent differences in the subcellular distribution of sulfi-dopeptide leukotriene binding sites.


Equilibrium Dissociation Constant Plasma Membrane Fraction Radioligand Binding Study Smooth Muscle Cell Line Ileal Smooth Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Badr, K.F., Baylis, C, Pfeffer, J.M., Pfeffer, M.A., Soberman, R.J., Lewis, R.A., Austen, K.F., Corey, E.J., and Brenner, B.M., 1984, Renal and systemic hemodynamic responses to intravenous infusion of leukotriene C4 in the rat, Circ. Res. 54:492–499.PubMedCrossRefGoogle Scholar
  2. Ballermann, B.J., Lewis, R.A., Corey, E.J., Austen, K.F., and Brenner, B.M., 1985, Identification and characterization of leukotriene C4 receptors in isolated rat renal glomeruli, Cire. Res. 56:324–330.CrossRefGoogle Scholar
  3. Bruns, R.F., Thomsen, W.J., and Pugsley, T.A., 1983, Binding of leukotrienes C4 and D4 to membranes from guinea pig lung: Regulation by ions and guanine nucleotides, Life Sci. 33:645–653.PubMedCrossRefGoogle Scholar
  4. Burke, J.A., Levi, R., Guo, Z.-G., and Corey, E.J., 1982, Effects on human and guinea pig cardiac preparations in vitro, J. Pharmacol. Exp. Ther. 221:235–241.PubMedGoogle Scholar
  5. Drazen, J. M., and Fanta, C, 1984, Physiologic studies of receptor heterogeneity for the sulfidopeptide leukotrienes, Clin. Res. 32:528A.Google Scholar
  6. Drazen, J.M., Austen, K.F., Lewis, R.A., Clark, D.A., Goto, G., Marfat, A., and Corey, E.J., 1980, Comparative airway and vascular activities of leukotrienes C-l and D in vivo and in vitro, Proc. Natl. Acad. Sci. U.S.A. 77:4354–4358.CrossRefGoogle Scholar
  7. Drazen, J. M., Lewis, R. A., Austen, K. F., and Corey, E. J., 1983, Pulmonary pharmacology of the SRS-A leukotrienes, in: Leukotrienes and Prostacyclin (F. Berti, G. Folco, and G. P. Velo, eds.), Plenum Press, New York, pp. 125–134.CrossRefGoogle Scholar
  8. Hogaboom, G.K., Mong, S., Wu, H.-L., and Crooke, S., 1983, Peptidoleukotrienes: Distinct receptors for leukotrienes C4 and D4 in the guinea pig lung, Biochem. Biophys. Res. Commun. 116:1136–1143.PubMedCrossRefGoogle Scholar
  9. Krilis, S., Lewis, R.A., Corey, E.J., and Austen, K.F., 1983a, Bioconversion of C-6 sulfidopeptide leukotrienes by the responding guinea pig ileum determines the time course of its contraction, J. Clin. Invest. 71:909–915.PubMedCrossRefGoogle Scholar
  10. Krilis, S., Lewis, R.A., Corey, E.J., and Austen, K.F., 1983b, Specific binding of leukotriene,C4on a smooth muscle cell line, J. Clin. Invest. 72:1516–1519.PubMedCrossRefGoogle Scholar
  11. Krilis, S., Lewis, R.A., Corey, E.J., and Austen, K.F., 1984, Specific binding of leukotriene C4 to plasma membrane and subcellular receptors of ileal smooth muscle cells, Proc. Natl. Acad. Sci. U.S.A. 81:4529–4533.PubMedCrossRefGoogle Scholar
  12. Krilis, S., Lewis, R. A., Drazen, J. M., and Austen, K. F., 1985, Subclasses of receptors for the sulfidopeptide leukotrienes, in: Prostaglandins and Membrane Ion Transport (P. Braquet, R. P. Garay, J. C. Frölich, and S. Nicosia, eds.), Raven Press, New York, pp. 91–97.Google Scholar
  13. Lee, T.H., Austen, K.F., Corey, E.J., and Drazen, J.M., 1984, LTE4-induced airway hyper-responsiveness of guinea pig tracheal smooth muscle to histamine, and evidence for three separate sulfidopeptide leukotriene receptors, Proc. Natl. Acad. Sci. U.S.A. 81:4922–4925.PubMedCrossRefGoogle Scholar
  14. Lewis, R.A., Drazen, J.M, Austen, K.F., Clark, D.A., and Corey, E.J., 1980, Identification of the C(6)-S-conjugate of leukotriene A with cysteine as a naturally occuring slow reacting substance of anaphylaxis (SRS-A). Importance of the 11 -cis geometry, Biochem. Biophys. Res. Commun. 96:271–277.PubMedCrossRefGoogle Scholar
  15. Lewis, R.A., and Austen, K.F., 1984, The biologically active leukotrienes: Biosynthesis, metabolism, receptors, functions and pharmacology, J. Clin. Invest. 73:889–897.PubMedCrossRefGoogle Scholar
  16. Nicosia, S., Crowley, H.J., Oliva, D., and Welton, A.F., 1984, Binding sites for 3H-LTC4 in membranes from guinea pig ileal longitudinal muscle, Prostaglandins 27:483–194.PubMedCrossRefGoogle Scholar
  17. Pollet, R.J., Standaert, M.L., and Haase, B.A., 1977, Insulin binding to the human lymphocyte receptor: Evaluation of the negative cooperativity model, J. Biol. Chem. 252:5828–5834.PubMedGoogle Scholar
  18. Pong, S.S., and DeHaven, R.N., 1983, Characterization of a leukotriene D4 receptor in guinea pig lung, Proc. Natl. Acad. Sci. U.S.A. 80:7415–7419.PubMedCrossRefGoogle Scholar
  19. Pong, S.S., DeHaven, R.N., Kuehl, R.A., Jr., and Egan, R.W., 1983, Leukotriene C4 binding to rat lung membranes, J. Biol. Chem. 258:9616–9619.PubMedGoogle Scholar
  20. Rosenthal, A., and Pace-Asciak, C.R., 1983, Potent vasoconstriction of the isolated perfused rat kidney by leukotrienes C4 and D4, Can. J. Physiol. Pharmacol. 61:325–328.PubMedCrossRefGoogle Scholar
  21. Samuelsson, B., 1983, Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation, Science 220:568–575.PubMedCrossRefGoogle Scholar
  22. Soter, N.A., Lewis, R.A., Corey, E.J., and Austen, K.F., 1983, Local effects of synthetic leukotrienes, J. Invest. Dermatol. 80:115–119.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Barbara J. Ballermann
    • 1
  • Tak H. Lee
    • 1
  • Robert A. Lewis
    • 1
  • K. Frank Austen
    • 1
  1. 1.Department of Medicine, Harvard Medical School, and Department of Rheumatology and ImmunologyBrigham and Women’s HospitalBostonUSA

Personalised recommendations