Advertisement

Transmembrane Signal in the Secretory Process of A23187-Stimulated Human Leukocytes

A Study of Eicosanoid Release
  • Monique Braquet
  • Roger Ducousso
  • Marie-Yvonne Chapelat
  • Pierre Braquet
  • Pierre Borgeat
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

Leukocytes play key roles in mechanisms of body defense against both endotoxins and exotoxins. The factors involved in triggering such defense mechanisms involve an activation of cellular membrane processes, among which is the release from phospholipids of arachidonic acid (AA) and its subsequent conversion into various eicosanoids. The liberation of such eicosanoids [e. g., leukotrienes, prostaglandins (PGs), HPETEs], in addition to other processes, is involved not only in the destruction of ingestible particles but also in the recruitment (chemotactic effect) of other cells for this process. All of these events depend on the generation and transmission of a membrane signal that involves mainly membrane metabolism and ion transport (Smolen et al., 1984).

Keywords

Arachidonic Acid Arachidonic Acid Metabolite Leukocyte Activation TRANSMEMBRANE Signal Human Polymorphonuclear Leukocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borgeat, P., Fruteau de Laclos, B., Rabinovitch, S., Picard, S., Braquet, P., Hebert, J., and Laviolette, J., 1984, Eosinophil-rich human polymorphonuclear leukocyte preparations characteristically release leukotriene C4 upon ionophore A 23187 challenge, Allergy Clin. Immunol. 2:310–317.CrossRefGoogle Scholar
  2. Braquet, P., Spinnewyn, B., Lehuu, B., Braquet, M., Chabrier, E., Dray, F., and DeFeudis, F. V., 1985, Is Ca2+-dependent K+ permeability involved in triggering the arachidonic acid cascade?—A study with rabbit platelets, Prostaglandins Leukotrienes Med. (in press).Google Scholar
  3. Dusing, R., Scherhag, R., Tippelman, R., Udde, U., Glanzer, K., and Kramer, H.J., 1982, Arachidonic acid metabolism in isolated rat aorta. Dependence of prostacyclin biosynthesis on extracellular potassium, J. Biol. Chem. 257:1993–1996.PubMedGoogle Scholar
  4. Gallin, E.K., Wiederhold, M.L., Lipsky, P.E., and Rosenthal, A.S., 1975, Spontaneous and induced membrane hyperpolarizations in macrophages, J. Cell. Physiol. 86:653–661.PubMedCrossRefGoogle Scholar
  5. Gardos, G., 1958, The function of calcium in the potassium permeability of human erythrocytes, Biochim. Biophys. Acta 30:653–654.PubMedCrossRefGoogle Scholar
  6. Gill, J.R., 1980, Bartter’s syndrome, Annu. Rev. Med.Annu. Rev. Med. 31:405–419.PubMedCrossRefGoogle Scholar
  7. Hoffman, J. F., Yingst, D. R., Goldinger, J. M, Blum, R. M., and Knauf, P. A., 1980, On the mechanism of Ca-dependent K transport in human red blood cells, in: Membrane Transport in Erythrocytes (U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds.), Munksgaard, Copenhagen, pp. 178–192.Google Scholar
  8. Korchak, H.M., and Weissman, G., 1978, Changes in membrane potential of human granulocytes antecede the metabolic responses to surface stimulation, Proc. Natl. Acad. Sci. U.S.A. 75:3818–3822.PubMedCrossRefGoogle Scholar
  9. Korchak, H.M., and Weissman, G., 1980, Stimulus-response coupling in the human neutrophil. Membrane potential changes and the role of extracellular Na+, Biochim. Biophys. Acta 601:180–194.PubMedCrossRefGoogle Scholar
  10. Kregenow, F.M., and Hoffman, J.F., 1972, Some kinetic and metabolic characteristics of calcium-induced potassium transport in human red cells, J. Gen. Physiol. 60:406–429.PubMedCrossRefGoogle Scholar
  11. Lew, V.L., and Ferreira, H. G., 1977, The effect of Ca on the K permeability of red cells, in: Membrane Transport in Red Cells (J. C. Ellory and V. L. Lew, eds.), Academic Press, New York, pp. 93–100.Google Scholar
  12. Lew, V.L., and Ferreira, H.G., 1978, Calcium transport and the properties of a calcium activated potassium channel in red cell membranes. Curr. Top. Membr. Transp. 10:217–277.CrossRefGoogle Scholar
  13. Oelz, O., Knapp, H. R., Roberts, L. J., Oelz, R., Sweetman, B. J., Oates, J. A., and Reed, P. W., 1978, Calcium-dependent stimulation of thromboxane and prostaglandin biosynthesis by iono-phores, in: Advances in Prostaglandin and Thromboxane Research, Vol. 3 (C. Galli, ed.), Raven Press, New York, pp. 148–158.Google Scholar
  14. Oliveira-Castro, G.M., and Dos Reis, G.A., 1981, Electrophysiology of phagocytic membranes. III. Evidence for a calcium-dependent potassium permeability change during slow hyperpolarizations of activated macrophages, Biochim. Biophys. Acta 640:500–511.PubMedCrossRefGoogle Scholar
  15. Schartz, W., and Passow, H., 1983, Ca2+-activated K+ channels in erythrocytes and excitable cells, Annu. Rev. Physiol. 45:359–374.CrossRefGoogle Scholar
  16. Showel, H.J., Naccache, P.H., Sha’afi, R.I., and Becker, E.L., 1977, The effects of extra-cellular K+, Na+, and Ca++ on lysosomal enzyme secretion from polymorphonuclear leukocytes, J. Immunol. 119:804–811.Google Scholar
  17. Skrabal, F., Aubock, J., and Hortnagl, H., 1981, Low sodium/high potassium diet for prevention of hypertension: Probable mechanism of action, Lancet 2:895–900.PubMedCrossRefGoogle Scholar
  18. Smolen, J. E., Korchak, H. M., and Weissman, G., 1984, Stimulus-secretion coupling in human polymorphonuclear leukocytes, in: Cell Biology of the Secretory Process (M. Cantin, ed.), S. Karger, Basel, pp. 517–545.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Monique Braquet
    • 1
  • Roger Ducousso
    • 1
  • Marie-Yvonne Chapelat
    • 2
  • Pierre Braquet
    • 2
  • Pierre Borgeat
    • 3
  1. 1.Centre de Recherches du Service de Santé des ArméesClamartFrance
  2. 2.I. H. B. Research LaboratoriesLe Plessis RobinsonFrance
  3. 3.Groupe de Recherches sur les Leucotriènes, Laboratoire d’Endocrinologie Moléculaire CentreHospitalier de l’Université LavalCanada

Personalised recommendations