Advertisement

Serology and Immunochemistry

  • E. P. Rybicki
  • M. B. von Wechmar
Part of the The Viruses book series (VIRS)

Abstract

The Bromo-, Cucumo-, Ilar-, and alfalfa mosaic virus groups share a number of properties in addition to their tripartite ssRNA genomes. This has prompted the recent proposal that they be grouped in one family for which the name “Tricornaviridae” was suggested (van Vloten-Doting et al., 1981). An important similarity between the viruses that directly affects serological studies on them, is their lability at neutral pH. Viruses of all four groups are sensitive to relatively low concentrations of neutral salts and anionic detergents at neutral pH (see Johnson and Argos, this volume; Lane, 1981; Kaper and Waterworth, 1981; Fulton, 1982). Although no serological relationships between viruses from the different groups have yet been demonstrated, serological studies on each of the groups are likely to be complicated by the same problems. These would include low antivirus serum titers, the presence in antisera of a high proportion of antibodies to dissociated capsid subunits, and virion dissociation in the course of serological testing. It seems obvious that a thorough understanding of the physical properties of each of the viruses is necessary in order to enable comprehensive and reproducible serological studies on them. Equally important is a thorough knowledge of the advantages and limitations of the various serological techniques commonly used in the study of viruses.

Keywords

Mosaic Virus Coat Protein Cucumber Mosaic Virus Plant Virus Indirect ELISA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Moudallal, Z., Briand, J. P., and van Regenmortel, M. H. V., 1982, Monoclonal antibodies as probes of the antigenic structure of tobacco mosaic virus, EMBO J. 1:1005.PubMedGoogle Scholar
  2. Ball, E. M., 1973, Solid phase radioimmunoassay for plant viruses, Virology 55:516.PubMedGoogle Scholar
  3. Bancroft, J. B., and Smith, D. B., 1975, The effect of dimethyladipimidate on the stability of cowpea chlorotic mottle and brome mosaic viruses, J. Gen. Virol. 27:257.Google Scholar
  4. Bancroft, J. B., Moorhead, E. L., Tuite, J., and Liu, H. P., 1960, The antigenic characteristics and the relationships among strains of alfalfa mosaic virus, Phytopathology 50:34.Google Scholar
  5. Bancroft, J. B., Wagner, G. W., and Bracker, C. E., 1969, The self-assembly of a nucleic-acid-free pseudo-top component for a small spherical virus, Virology 36:146.Google Scholar
  6. Barbara, D. J., and Clark, M. F., 1982, A simple indirect ELISA using F(ab’)2 fragments of immunoglobulin, J. Gen. Virol. 58:315.PubMedGoogle Scholar
  7. Barbara, D. J., Clark, M. F., Thresh, J. M., and Casper, R., 1978, Rapid detection and sero-typing of Prunus necrotic ringspot virus in perennial crops by enzyme-linked immunosorbent assay, Ann. Appl. Biol. 90:395.Google Scholar
  8. Bar-Joseph, M., and Malkinson M., 1980, Hen egg yolk as a source of antiviral antibodies in the enzyme-linked immunosorbent assay (ELISA): A comparison of two plant viruses, J. Virol. Methods 1:179.PubMedGoogle Scholar
  9. Bar-Joseph, M., and Salomon, R., 1980, Heterologous reactivity of tobacco mosaic virus strains in enzyme-linked immunosorbent assays, J. Gen. Virol. 47:509.Google Scholar
  10. Bol, J. F., Brederode, F. T., Janze, G. C., and Rauh, D. K., 1975, Studies on sequence homology between the RNA’s of alfalfa mosaic virus, Virology 65:1.PubMedGoogle Scholar
  11. Castel, A., Kraal, B., de Graaf, J. M, and Bosch, L., 1979, The primary structure of the coat protein of alfalfa mosaic virus strain VRU, Eur. J. Biochem. 102:125.PubMedGoogle Scholar
  12. Chauvin, C., Pfeiffer, P., Witz, J., and Jacrot, B., 1978, Structural polymorphism of bromegrass mosaic virus: A neutron small angle scattering investigation, Virology 88:138.PubMedGoogle Scholar
  13. Clark, M. F., and Adams, A. N., 1977, Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses, J. Gen. Virol. 34:475.PubMedGoogle Scholar
  14. Cleveland, D. W., Fischer, S. G., Kirschner, M. W., and Laemmli, U. K., 1977, Peptide mapping by limited proteolysis in sodium dodecyl sulphate and analysis by gel electrophoresis, J. Biol. Chem. 252:1102.PubMedGoogle Scholar
  15. Cohen, J., Loebenstein, G., and Milne, R. G., 1982, Effect of pH and other conditions on immunosorbent electron microscopy of several plant viruses, J. Virol. Methods. 4:323.PubMedGoogle Scholar
  16. Dale, J. L., Gibbs, A. J., and Behncken, G. M., 1984, Cassia yellow blotch virus: A new Bromovirus from an Australian native legume, Cassia pleurocarpa, J. Gen. Virol. 65:281.Google Scholar
  17. Dasgupta, R., and Kaesberg, P., 1982, Complete nucleotide sequences of the coat protein messenger RNAse of brome mosaic virus and cowpea chlorotic mottle virus, Nucleic Acids Res. 10:703.PubMedGoogle Scholar
  18. Derrick, K. S., 1973, Quantitative assay for plant viruses using serologically specific electron microscopy, Virology 56:652.PubMedGoogle Scholar
  19. Devergne, J. C., 1975, A study of the serological behaviour of CMV: Relationship between CMV strains and other viruses, Meded. Fac. Landbouwwet. Rijksuniv. Gent 40:19.Google Scholar
  20. Devergne, J. C., and Cardin, L., 1970, Etude sérologique comparative de plusiers isolats du virus de la mosaique du concombre (CMV): Relations sérologiques au niveau du virus et de l’antigéne soluble, Ann. Phytopathol. 2:639.Google Scholar
  21. Devergne, J. C., and Cardin, L., 1973, Contribution a l’étude du virus de la mosaique du concombre (CMV). IV. Essai de classification de plusieurs isolats sur la base de leur structure antigénique, Ann. Phytopathol. 5:409.Google Scholar
  22. Devergne, J. C., and Cardin, L., 1975, Relations serologiques entre cucumovirus (CMV, TAV, PSV), Ann. Phytopathol. 7:255.Google Scholar
  23. Devergne, J. C., and Cardin, L., 1976, Characterisation de deux serotypes du virus du Ra-bougrissement de l’Arachide (PSV), Ann. Phytopathol. 8:449.Google Scholar
  24. Devergne, J. C., Cardin, L., and Quiot, J. B., 1978, Detection et identification serologiques des infections naturelles par le virus de la mosaique du concombre, Ann. Phytopathol. 10:233.Google Scholar
  25. Devergne, J. C., Cardin, L., Burckard, J., and van Regenmortel, M. H. V., 1981, Comparison of direct and indirect ELISA for detecting antigenically related Cucumoviruses, J. Virol. Methods 3:193.PubMedGoogle Scholar
  26. Diaz-Ruiz, J. R., and Kaper, J. M., 1983, Nucleotide sequence relationships among thirty peanut stunt virus isolates determined by competition hybridisation, Arch. Virol. 75:277.PubMedGoogle Scholar
  27. Diaz-Ruiz, J. R., Kaper, J. M., Waterworth, H. E., and Devergne, J. C., 1979, Isolation and characterisation of peanut stunt virus from alfalfa in Spain, Phytopathology 69:504.Google Scholar
  28. Douine, L., and Devergne, J. C., 1978, Isolement en France du virus du Rabougrissement de l’Arachide (peanut stunt virus, PSV), Ann. Phytopathol. 10:79.Google Scholar
  29. Driedonks, R. A., Krijgsman, P. C. J., and Mellema, J. E., 1978, Coat protein polymerisation of alfalfa mosaic virus strain VRU, J. Mol. Biol. 124:713.PubMedGoogle Scholar
  30. Erasmus, D. S., 1982, The association of brome mosaic virus with Puccinia graminis tritici, M.Sc. thesis, University of Cape Town.Google Scholar
  31. Erasmus, D. S., Rybicki, E. P., and von Wechmar, M. B., 1983, The association of brome mosaic virus and wheat rusts. II. Detection of BMV in/on uredospores of wheat stem rust, Phytopathol. Z. 108:34.Google Scholar
  32. Ford, D. J., Radin, R., and Pesce, A. J., 1978, Characterisation of glutaraldehyde-coupled alkaline phosphatase-antibody and lactoperoxidase-antibody conjugates, Immunochemistry 15:237.PubMedGoogle Scholar
  33. Francki, R. I. B., and Habili, N., 1972, Stabilization of capsid structure and enhancement of immunogenicity of cucumber mosaic virus (Q strain) by formaldehyde, Virology 48:309.PubMedGoogle Scholar
  34. Francki, R. I. B., Mossop, D. W., and Hatta, T., 1979. Cucumber mosaic virus, CMI/AAB Descriptions of Plant Viruses No. 213. Google Scholar
  35. Francki, R. I. B., Milne, R. G., and Hatta, T., 1984, An Atlas of Plant Viruses, Volume II, CRC Press, Boca Raton, Florida.Google Scholar
  36. Fulton, R. W., 1968, Serology of viruses causing cherry necrotic ringspot, plum line pattern, rose mosaic, and apple mosaic, Phytopathylogy 58:635.Google Scholar
  37. Fulton, R. W., 1981, Ilarviruses, in: Handbook of Plant Virus Infections and Comparative Diagnosis (E. Kurstak, ed.), pp. 377–413, Elsevier/North-Holland, Amsterdam.Google Scholar
  38. Fulton, R. W., 1982, Ilar-like characteristics of American plum line pattern virus and its serological detection in prunus, Phytopathology 72:1345.Google Scholar
  39. Fulton, J. P., Gamez, R., and Scott, H. A., 1975, Cowpea chlorotic mottle and yellow stipple viruses, Phytopathology 65:741.Google Scholar
  40. Ghabrial, S. A., and Shepherd, R. J., 1980, A sensitive radioimmunosorbent assay for the detection of plant viruses, J. Gen. Virol. 48:311.Google Scholar
  41. Gough, K. H., and Shukla, D. D., 1980, Further studies on the use of protein A in immune electron microscopy for detecting virus particles, J. Gen. Virol. 51:45.Google Scholar
  42. Habili, N., and Francki, R. I. B., 1974, Comparative studies on tomato aspermy and cucumber mosaic viruses. 1. Physical and chemical properties, Virology 57:392.PubMedGoogle Scholar
  43. Habili, N., and Francki, R. I. B., 1975. Comparative studies on tomato aspermy and cucumber mosaic viruses. IV. Immunogenic and serological properties, Virology 64:421.PubMedGoogle Scholar
  44. Halk, E. L., and Franke, J., 1983, Identification of serological types of apple mosaic, prunus necrotic ringspot and tobacco streak viruses with monoclonal antibodies, Phytopathology 73:789 (abstract).Google Scholar
  45. Halk, E. L., Hsu, H. T., and Aebig, J., 1982, Properties of virus specific monoclonal antibodies to prunus necrotic ringspot (NRSV), apple mosaic (ApMV), tobacco streak (TSV) and alfalfa mosaic (AMV) viruses, Phytopathology 72:953 abstract).Google Scholar
  46. Halk, E. L., Hsu, H. T., Aebig, J., and Franke, F., 1984, Production of monoclonal antibodies against three Ilarviruses and alfalfa mosaic virus and their use in serotyping, Phytopathology 74:367.Google Scholar
  47. Haseloff, J., Goelet, P., Zimmern, D., Ahlquist, P., and Dasgupta, R., 1984, Striking similarities in amino acid sequence among nonstructural proteins encoded by RNA viruses that have dissimilar genomic organization, Proc. Natl. Acad. Sci. USA 81:4358.PubMedGoogle Scholar
  48. Hollings, M., and Horvath, J., 1978, Rep. Glasshouse Crops Res. Inst, for 1977 p. 129.Google Scholar
  49. Hollings, M., and Horvath, J., 1981, Melandrium yellow fleck virus, CMI/AAB Descriptions of Plant Viruses No. 236. Google Scholar
  50. Hollings, M., and Stone, O. M., 1971, Tomato aspermy virus, CMI/AAB Descriptions of Plant Viruses No. 79. Google Scholar
  51. Hsu, H. T., Halk, E. L., and Lawson, R. H., 1983, Monoclonal antibodies in plant virology [abstract], Proceedings, 4th International Congress of Plant Pathology, Melbourne, Australia, August 1983.Google Scholar
  52. Hsu, H. T., Jordon, R. L., and Lawson, R. H., 1984, Monoclonal antibodies and viruses, ASM News 50(3):99.Google Scholar
  53. Incardona, N. L., and Kaesberg, P., 1964, A pH-induced structural change in bromegrass mosaic virus, Biophys. J. 4:12.Google Scholar
  54. Jaspars, E. M. J., and Bos, L., 1980, Alfalfa mosaic virus, CMI/AAB Descriptions of Plant Viruses No. 229 (No. 46 revised).Google Scholar
  55. Jaspars, E. M. J., and Moed, J. R., 1966, The complexity of alfalfa mosaic virus, in: Viruses of Plants (A. B. R. Beemster and J. Dijkstra, eds.), pp. 188–195, North-Holland, Amsterdam.Google Scholar
  56. Kaper, J. M., and Waterworth, H. E., 1981, Cucumoviruses, in: Handbook of Plant Virus Infections and Comparative Diagnosis (E. Kurstak, ed.), pp. 257–323, Elsevier/North-Holland, Amsterdam.Google Scholar
  57. Koenig, R., 1978, ELISA in the study of homologous and heterologous reactions of plant viruses, J. Gen. Virol. 40:309.Google Scholar
  58. Koenig, R., 1981, Indirect ELISA for the broad specificity detection of plant viruses, J. Gen. Virol 55:53.Google Scholar
  59. Koenig, R., Francksen, H., and Stegemann, H., 1981, Comparison of tymovirus capsid proteins in SDS Polyacrylamide porosity gradient gels after partial cleavage with different proteases, Phytopathol. Z. 100:347.Google Scholar
  60. Kruse, J., Verduin, B. J. M., and Visser, A. J. W. G., 1981, Fluorescence of cowpea chlorotic mottle virus modified with pyridoxal-5’-phosphate, Eur. J. Biochem. 105:395.Google Scholar
  61. Kuhn, C. W., 1968, Identification of specific infectivity of a soybean strain of cowpea chlorotic mottle virus, Phytopathology 58:1441.Google Scholar
  62. Lane, L. C., 1981, Bromoviruses, in: Handbook of Plant Virus Infections and Comparative Diagnosis (E. Kurstak, ed.), pp. 333–376, Elsevier/North-Holland, Amsterdam.Google Scholar
  63. Lane, L. C., and Kaesberg, P., 1971, Multiple genetic components in bromegrass mosaic virus, Nature New Biol. 232:40.PubMedGoogle Scholar
  64. Lommel, S. A., McCain, A. H., and Morris, T. J., 1982, Evaluation of indirect enzyme-linked immunosorbent assay for the detection of plant viruses, Phytopathology 72:1018.Google Scholar
  65. McMorran, J. P., and Cameron, H. R., 1983, Detection of 41 isolates of necrotic ringspot, apple mosaic, and prune dwarf viruses in Prunus and Malus by enzyme-linked immunosorbent assay, Plant Dis. 67:536.Google Scholar
  66. Marco, S., and Cohen, S., 1979, Rapid detection and titer evaluation of viruses in pepper by enzyme-linked immunosorbent assay, Phytopathology 69:1259.Google Scholar
  67. Matthews, R. E. F., 1970, Plant Virology, pp. 636–637, Academic Press, New York.Google Scholar
  68. Matthews, R. E. F., 1979, Classification and nomenclature of viruses, Intervirology 12:131.Google Scholar
  69. Matthews, R. E. F., 1982, Classification and nomenclature of viruses, Intervirology 17:1.Google Scholar
  70. Miki, T., and Knight, C. A., 1965, Preparation of broad bean mottle virus protein, Virology 25:478.Google Scholar
  71. Milne, R. G., 1980, Some observations and experiments on immunosorbent electron microscopy of plant viruses, Acta Hortic. 110:129.Google Scholar
  72. Milne, R. G., and Luisoni, E., 1977, Rapid immune electron microscopy of virus preparations, in: Methods in Virology (K. Maramorosch and H. Koprowski, eds.), Volume VI, pp. 264–281, Academic Press, New York.Google Scholar
  73. Mink, G. I., 1980, Identification of rugose mosaic diseased cherry trees by enzyme-linked immunosorbent assay, Plant Dis. Rep. 64:691.Google Scholar
  74. Mink, G. I., and Uyeda, I., 1982, Ilarviruses: Suggested revision of subgroups [abstract], Proceedings, 4th International Conference on Comparative Virology, Banff, Alberta, August 1982.Google Scholar
  75. Moosic, J. P., 1978, The primary structure of brome mosaic virus coat protein, Ph.D. thesis, University of Wisconsin, Madison.Google Scholar
  76. Mossop, D. W., Francki, R. I. B., and Grivell, C. J., 1976, Comparative studies on tomato aspermy and cucumber mosaic viruses. V. Purification and properties of a cucumber mosaic virus inducing severe chlorosis, Virology 74:544.PubMedGoogle Scholar
  77. Murant, A. F., Abu-Salih, H. S., and Goold, R. A., 1973, Rep. Scott. Hortic. Res. Inst. p. 67.Google Scholar
  78. Murthy, M. R. N., 1983, Comparison of the nucleotide sequences of cucumber mosaic virus and brome mosaic virus, J. Mol. Biol. 168:469.PubMedGoogle Scholar
  79. Musil, M., and Richter, J., 1983, Serological properties of cucumber mosaic virus isolated from Cucurbita pepo L. in Slovakia, Biologia (Bratislava) 38:237.Google Scholar
  80. Newmark, P., 1984, In search of novel immunogens, Nature (London) 311:510.Google Scholar
  81. O’Donnell, I. J., Shukla, D. D., and Gough, K. H., 1982, Electro-blot radio-immunoassay of virus-infected plant sap—A powerful new technique for detecting plant viruses, J. Virol. Methods 4:19.PubMedGoogle Scholar
  82. Olmsted, J. B., 1981, Affinity purification of antibodies from diazotised paper blots of heterogeneous protein samples, J. Biol. Chem. 256: 1955.Google Scholar
  83. Oostergetel, G. T., Krijgsman, P. C. J., Mellema, J. E., Cusack, S., and Miller, A., 1981, Evidence for the absence of swelling of alfalfa mosaic virions, Virology 109:206.PubMedGoogle Scholar
  84. Ouchterlony, O., 1962, Diffusion-in-gel methods for immunological analysis. II, in: Progress in Allergy (P. Kallos and B. H. Waksman, eds.), Volume VI, pp. 30–154, Karger, Basel.Google Scholar
  85. Pares, R. D., and Whitecross, M. I., 1982, Gold-labelled antibody decoration (GLAD) in the diagnosis of plant viruses by immuno-electron microscopy, J. Immunol Methods 51:23.PubMedGoogle Scholar
  86. Pietersen, G., 1983, Properties and detection of alfalfa mosaic virus, M.Sc. thesis, University of Pretoria.Google Scholar
  87. Poison, A., von Wechmar, M. B., and van Regenmortel, M. H. V., 1980a, Isolation of viral IgY antibodies from yolks of immunized hens, Immunol. Commun. 9:475.Google Scholar
  88. Poison, A., von Wechmar, M. B., and Fazakerley, G., 1980b, Antibodies to proteins from yolks of immunized hens, Immunol. Commun. 9:495.Google Scholar
  89. Proll, E., Richter, J., Hofferek, H., and Eisenbrandt, K., 1972, Untersuchungen zur Differenzierung von drei Staemmen des Trespenmosaik Virus. III. Charakterisierung einer pH-induzieten Aenderung der Konformation, Zentralbl. Bakteriol. (Abstr. II) 127:573.Google Scholar
  90. Purcifull, D. E., Christie, S. R., and Lima, J. A. A., 1981, Detection of four isometric plant viruses in sodium dodecyl sulfate immunodiffusion tests, Phytopathology 71:1221.Google Scholar
  91. Rao, A. L. N., Hatta, T., and Francki, R. I. B., 1982, Comparative studies on tomato aspermy and cucumber mosaic viruses. VII. Serological relationships reinvestigated, Virology 116:318.PubMedGoogle Scholar
  92. Richter, J., Eisenbrandt, K., Hofferek, H., and Proll, E., 1972, Untersuchungen über den Einfluss von Aldehyden auf das Trespenmosaik Virus. I. Versuche mit Formaldehyd, Arch. Pflanzenschutz 8:253.Google Scholar
  93. Richter, J., Eisenbrandt, K., Proll, E., and Hofferek, H., 1973, Untersuchungen über den Einfluss von Aldehyden auf das Trespenmosaik Virus. II. Versuche mit Glutaraldehyd, Arch. Pflanzenschutz 9:211.Google Scholar
  94. Richter, J., Proll, E., and Musil, M., 1979, Serological relationships between robinia mosaic, clover blotch and peanut stunt viruses, Acta Virol. 23:489.PubMedGoogle Scholar
  95. Roberts, I. M., Milne, R. G., and van Regenmortel, M. H. V., 1982, Suggested terminology for virus/antigen interactions observed by electron microscopy, Intervirology 18:147.PubMedGoogle Scholar
  96. Rochow, W. F., and Carmichael, L. E., 1979, Specificity among barley yellow dwarf viruses in enzyme immunosorbent assays, Virology 95:415.PubMedGoogle Scholar
  97. Roosien, J., and van Vloten-Doting, L., 1983, A mutant of alfalfa mosaic virus with an unusual structure, Virology 126:155.PubMedGoogle Scholar
  98. Rybicki, E. P., 1979, The serology of the Bromoviruses, M.Sc. thesis, University of Cape Town.Google Scholar
  99. Rybicki, E. P., 1984, Investigations of viruses affecting South African small grains, Ph.D. thesis, University of Cape Town.Google Scholar
  100. Rybicki, E. P., and Coyne, V. E., 1983, Serological differentiation of brome mosaic virus morphomers, FEMS Microbiol. Lett. 20:103.Google Scholar
  101. Rybicki, E. P., and von Wechmar, M. B., 1981, The serology of the Bromoviruses, 1. Serological interrelationships of the Bromoviruses, Virology 109:309.Google Scholar
  102. Rybicki, E. P., and von Wechmar, M. B., 1982, Enzyme-assisted immune detection of plant virus proteins electroblotted onto nitrocellulose paper, J. Virol. Methods 5:267.PubMedGoogle Scholar
  103. Scott, H. A., and Slack, S. A., 1971, Serological relationship of brome mosaic and cowpea chlorotic mottle viruses, Virology 46:490.PubMedGoogle Scholar
  104. Shepard, J. F., Secor, G. A., and Purcifull, D. E., 1974a, Immunological cross-reactivity between the dissociated capsid proteins of PVY group plant viruses, Virology 58:464.PubMedGoogle Scholar
  105. Shepard, J. F., Gaard, G., and Purcifull, D. E., 1974b, A study of tobacco etch virus-induced inclusions using indirect immunoferritin procedures, Phytopathology 64:418.Google Scholar
  106. Shepherd, R. J., Francki, R. I. B., Hirth, L., Hollings, M., Inouye, T., Macleod, R., Purcifull, D. E., Sinha, R. C., Tremaine, J. H., and Valenta, V., 1976, New groups of plant viruses approved by the International Committee on Taxonomy of Viruses, Intervirology 6:181.Google Scholar
  107. Shukla, D. D., and Gough, K. H., 1979, The use of protein A, from Staphylococcus aureus, in immune electron microscopy for detecting plant virus particles, J. Gen. Virol. 45:533.Google Scholar
  108. Shukla, D. D., O’Donnell, I. J., and Gough, K. H., 1983, Further studies on the electro-blot radioimmunoassay (EBRIA) for detecting plant viruses, Acta Phytopathol. Acad. Sci. Hung. 18:79.Google Scholar
  109. Singer, S. J., and Schick, A. F., 1961, The properties of specific stains for electron microscopy prepared by the conjugation of antibody molecules with ferritin, J. Biophys. Biochem. Cytol. 9:519.PubMedGoogle Scholar
  110. Skotland, C. B., and Kaniewski, W., 1981, Viruses in hop (Hwnuluslupulus), Phytopathology 71:255 (Abstract).Google Scholar
  111. Thomas, B. J., Barton, R. J., and Tuszynski, A., 1983, Hydrangea mosaic virus, a new Ilarvirus from Hydrangea macrophylla (Saxifragaceae), Ann. Appl. Biol. 103:261.Google Scholar
  112. Tien-Po, Rao, A. L. N., and Hatta, T., 1982, Cucumber mosaic virus from corn flower in China, Plant Dis. 66:337.Google Scholar
  113. Torrance, L., and Jones, R. A. C., 1981, Recent developments in serological methods suited for use in routine testing for plant viruses, Plant Pathol. 30:1.Google Scholar
  114. Towbin, H., Staehelin, T., and Gordon, J., 1979, Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: Procedure and some applications, Proc. Natl. Acad. Sci. USA 76:4350.PubMedGoogle Scholar
  115. Uyeda, I., and Mink, G. I., 1983, Relationships among some Ilarviruses: Proposed revision of subgroup A, Phytopathology 73:47.Google Scholar
  116. van Baien, E., 1982, The effect of pretreatments of carbon-coated formvar films on the trapping of potato leafroll virus particles using immunosorbent electron microscopy, Neth. J. Plant Pathol. 88:33.Google Scholar
  117. van Regenmortel, M. H. V., 1967, Serological studies on naturally occurring strains and chemically induced mutants of tobacco mosaic virus, Virology 31:467.PubMedGoogle Scholar
  118. van Regenmortel, M. H. V., 1981, Tobamoviruses, in: Handbook of Plant Virus Infections and Comparative Diagnosis (E. Kurstak, ed.), pp. 541–564, Elsevier/North-Holland, Amsterdam.Google Scholar
  119. van Regenmortel, M. H. V., 1982, Serology and Immunochemistry of Plant Viruses, Academic Press, New York.Google Scholar
  120. van Regenmortel, M. H. V., and Burckard, J., 1980, Detection of a wide spectrum of tobacco mosaic virus strains by indirect enzyme immunosorbent assays (ELISA), Virology 106:327.PubMedGoogle Scholar
  121. van Regenmortel, M. H. V., and Pinck, L., 1981, Alfalfa mosaic virus group, in: Handbook of Plant Virus Infections and Comparative Diagnosis (E. Kurstak, ed.), pp. 415–421, Elsevier/North-Holland, Amsterdam.Google Scholar
  122. van Regenmortel, M. H. V., and von Wechmar, M. B., 1970, A reexamination of the serological relationship between tobacco mosaic virus and cucumber virus 4, Virology 41:330.PubMedGoogle Scholar
  123. van Tol, R. G. L., and van Vloten-Doting, L., 1981, Lack of serological relationship between the 35K nonstructural protein of alfalfa mosaic virus and the corresponding proteins of three other plant viruses with a tripartite genome, Virology 109:444.PubMedGoogle Scholar
  124. van Vloten-Doting, L., and Jaspars, E. M. J., 1977, Plant covirus systems: Three component systems, in: Comprehensive Virology, Volume 11 (H. Fraenkel-Conrat and R. R. Wagner, eds.), pp. 1–53, Plenum Press, New York.Google Scholar
  125. van Vloten-Doting, L., Kruseman, J., and Jaspars, E. M. J., 1968, The biological function and mutual dependence of bottom component and top component a of alfalfa mosaic virus, Virology 34:728.PubMedGoogle Scholar
  126. van Vloten-Doting, L., Hasrat, J. A., Oosterwijk, E., van’t Sant, P., Schoen, M. A., and Roosien, J., 1980, Description and complementation analysis of 13 temperature-sensitive mutants of alfalfa mosaic virus, Gen. Virol. 46:415.Google Scholar
  127. van Vloten-Doting, L., Francki, R. I. B., Fulton, R. W., Kaper, J. M., and Lane, L. C., 1981, Tricornaviridae—a proposed family of plant viruses with tripartite, single-stranded RNA genomes, Intervirology 15:431.Google Scholar
  128. von Wechmar, M. B., 1967, A study of viruses affecting Gramineae in South Africa, Ph.D. thesis, University of Stellenbosch.Google Scholar
  129. von Wechmar, M. B., and van Regenmortel, M. H. V., 1968, Serological studies on bromegrass mosaic virus and its protein fragments, Virology 34:36.Google Scholar
  130. von Wechmar, M. B., Kaufmann, A., Desmarais, F., and Rybicki, E. P., 1984, Detection of seed-transmitted brome mosaic virus by ELISA, radial immunodiffusion and immu-noelectroblotting tests, Phytopathol. Z. 109:341.Google Scholar
  131. Wittman, H. G., and Paul, H. L., 1961, Vergleich der Aminosaurenzusammensetzung der Proteine des Echten Ackerbohnenmosaik-Virus, des broad bean mottle-Virus, und des Tobakmosaikvirus, Phytopathol. Z. 41:74.Google Scholar
  132. Yamazaki, H., and Kaesberg, P., 1963, Isolation and characterisation of a protein subunit of broad bean mottle virus, J. Mol. Biol. 6:465.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • E. P. Rybicki
    • 1
  • M. B. von Wechmar
    • 1
  1. 1.Microbiology DepartmentUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations