Virus Genetics

  • L. van Vloten-Doting
Part of the The Viruses book series (VIRS)


In the last 10 years our knowledge about the organization and expression of RNA plant viruses has increased considerably (Matthews, 1981; van Vloten-Doting et al., 1983). The complete base sequence of a number of plant viruses is known. These studies combined with in vitro translation studies (Atabekov and Morozov, 1979; Davies and Hull, 1982; van Vloten-Doting and Neeleman, 1982) revealed the number and size of the primary translation products of the different virus RNAs. However, our knowledge about the function of virus-coded proteins is lagging behind. One reason for this is that genetic studies with RNA viruses are hampered by the apparent lack of recombination taking place at the RNA level (King et al., 1982). Moreover, compared to RNA bacterial or animal viruses, very little genetic work has been done with RNA plant viruses, mainly because plants are less amenable for genetic studies than bacterial or animal cells (e.g., there are no replica plating methods for the easy selection of conditional lethal mutants, etc.).


Coat Protein Cucumber Mosaic Virus Alfalfa Mosaic Virus Nonpermissive Temperature Brome Mosaic Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atabekov, J. G., and Morozov, S. Y., 1979, Translation of plant virus messenger RNAs, Adv. Virus Res. 25:1–91.PubMedCrossRefGoogle Scholar
  2. Bancroft, J. B., 1970, The self-assembly of spherical plant viruses, Adv. Virus Res. 16:99–134.PubMedCrossRefGoogle Scholar
  3. Bancroft, J. B., 1972, A virus made from parts of the genomes of brome mosaic and cowpea chlorotic mottle virus, J. Gen. Virol. 14:223–228.CrossRefGoogle Scholar
  4. Bancroft, J. B., and Lane, L. C., 1973, Genetic analysis of cowpea clorotic mottle and brome mosaic virus, J. Gen. Virol. 19:381–389.CrossRefGoogle Scholar
  5. Bancroft, J. B., Hills, G. J., and Markham, R., 1967, A study of the self-assembly process in a small spherical virus: Formation of organized structures from protein subunits in vitro, Virology 31:354–379.PubMedCrossRefGoogle Scholar
  6. Bancroft, J. B., McLean, G. D., Rees, M. W., and Short, M. N., 1971, The effect of an arginyl to a cystinyl replacement on the uncoating behavior of a spherical plant virus, Virology 45:707–715.PubMedCrossRefGoogle Scholar
  7. Bancroft, J. B., Rees, M. W., Dawson, J. R. O., McLean, G. D., and Short, M. N., 1972, Some properties of a temperature-sensitive mutant of cowpea chlorotic mottle virus, J. Gen. Virol. 16:69–81.CrossRefGoogle Scholar
  8. Bancroft, J. B., Rees, M. W., Johnson, M. W., and Dawson, J. R. O., 1973, A salt-stable mutant of cowpea chlorotic mottle virus, J. Gen. Virol. 21:507–513.CrossRefGoogle Scholar
  9. Bancroft, J. B., McDonald, J. G., and Rees, M. W., 1976, A mutant of cowpea chlorotic mottle virus with a perturbed assembly mechanism, Virology 75:293–305.PubMedCrossRefGoogle Scholar
  10. Barker, R. F., Jarvis, N. P., Thompson, D. V., Loesch-Fries, L. S., and Hall, T. C., 1983, Complete nucleotide sequence of alfalfa mosaic virus RNA 3, Nucleic Acids Res. 11:2881–2891.PubMedCrossRefGoogle Scholar
  11. Bol, J. F., van Vloten-Doting, L., and Jaspars, E. M. J., 1971, A functional equivalence of top component a RNA and coat protein in the initiation of infection by alfalfa mosaic virus, Virology 46:73–85.PubMedCrossRefGoogle Scholar
  12. Bos, L., 1969, Experiences with a collection of plant viruses in leaf material dried and stored over calcium chloride, and a discussion of literature on virus preservation, Meded. Fac. Landbouwwet. Rijksuniv. Gent 34:875–887.Google Scholar
  13. Bos, L., Huttinga, H., and Maat, D. Z., 1980, Spinach latent virus, a new Ilarvirus seed-borne in Spinacia oleracea, Neth. J. Plant Pathol. 86:79–98.CrossRefGoogle Scholar
  14. Castel, A., Kraal, B., De Graaf, J. M., and Bosch, L., 1979, The primary structure of the coat protein of alfalfa mosaic virus strain VRU, Eur. J. Biochem. 102:125–138.PubMedCrossRefGoogle Scholar
  15. Cornelissen, B. J. C., and Bol, J. F., 1984, Homology between the proteins encoded by tobacco mosaic virus and two Tricornaviruses, Plant Mol. Biol. 3:379–384.CrossRefGoogle Scholar
  16. Cornelissen, B. J. C., Brederode, F. T., Moorman, R. J. M., and Bol, J. F., 1983a, Complete nucleotide sequence of alfalfa mosaic virus RNA 1, Nucleic Acids Res. 11:1253–1265.PubMedCrossRefGoogle Scholar
  17. Cornelissen, B. J. C., Brederode, F. T., Veeneman, G. H., van Boom, J. H., and Bol, J. F., 1983b, Complete nucleotide sequence of alfalfa mosaic virus RNA 2, Nucleic Acids Res. 11:3019–3025.PubMedCrossRefGoogle Scholar
  18. Davies, J. W., and Hull, R., 1982, Genome expression of positive strand RNA viruses, J. Gen. Virol. 61:1–19.CrossRefGoogle Scholar
  19. Dawson, J. R. O., and Watts, J. W., 1979, Analysis of the products of mixed infection of tobacco protoplasts with two strains of cowpea chlorotic mottle virus, J. Gen. Virol. 45:133–137.CrossRefGoogle Scholar
  20. Dawson, J. R. O., Motoyoshi, F., Watts, J. W., and Bancroft, J. B., 1975, Production of RNA and coat protein of a wildtype isolate and a temperature-sensitive mutant of cowpea chlorotic mottle virus in cowpea leaves and tobacco protoplasts, Virology 29:99–107.Google Scholar
  21. Dawson, W. O., 1978, Isolation and mapping of replication-deficient, temperature-sensitive mutants of cowpea chlorotic mottle virus, Virology 90:112–118.PubMedCrossRefGoogle Scholar
  22. Dawson, W. O., 1981, Effect of temperature-sensitive, replication-defective mutations on RNA synthesis of cowpea chlorotic mottle virus, Virology 115:130–136.PubMedCrossRefGoogle Scholar
  23. Dawson, W. O., and Jones, G. E., 1976, A procedure for specifically selecting temperature-sensitive mutants of tobacco mosaic virus, Mol. Gen. Genet. 145:307–309.CrossRefGoogle Scholar
  24. De Jager, C. P., and Breekland, L., 1979, Evidence for intrastrand complementation in cowpea mosaic virus infection, Virology 99:312–318.PubMedCrossRefGoogle Scholar
  25. Domingo, E., Sabo, D., Taniguchi, T., and Weissmann, C., 1978, Nucleotide sequence heterogeneity of an RNA phage population, Cell 13:735–744.PubMedCrossRefGoogle Scholar
  26. Donis-Keller, H., Browning, K. S., and Clark, J. M., Jr., 1981, Sequence heterogeneity in satellite tobacco necrosis virus RNA, Virology 110:43–54.PubMedCrossRefGoogle Scholar
  27. Franck, A., 1978, Contribution a l’étude du fonctionnement du genome multipartite du virus de la mosaique de la Luzerne, Ph.D. thesis, University of Strasbourg.Google Scholar
  28. Franck, A., and Hirth, L., 1976, Temperature-resistant strains of alfalfa mosaic virus, Virology 70:283–291.PubMedCrossRefGoogle Scholar
  29. Goelet, P., Lomonossof, G. P., Butler, P. J. G., Akain, M. E., Gait, M. J., and Kam, J., 1982, Nucleotide sequence of tobacco mosaic virus RNA, Proc. Natl. Acad. Sci. USA 79:5818–5822.PubMedCrossRefGoogle Scholar
  30. Gonsalves, D., and Fulton, R. W., 1977, Activation of Prunes necrotic ringspot virus and rose mosaic virus by RNA 4 component of some Ilarviruses, Virology 81:398–407.PubMedCrossRefGoogle Scholar
  31. Gonsalves, D., and Garnsey, S. M., 1975a, Functional equivalence of an RNA component and coat protein for infectivity of citrus leaf rugose virus, Virology 64:23–31.PubMedCrossRefGoogle Scholar
  32. Gonsalves, D., and Garnsey, S. M., 1975b, Nucleic acid components of citrus variegation virus and their activation by coat protein, Virology 67:311–318.PubMedCrossRefGoogle Scholar
  33. Gonsalves, D., and Garnsey, S. M., 1975c, Infectivity of heterologous RNA-protein mixtures from alfalfa mosaic, citrus leaf rugose, citrus variegation, and tobacco streak viruses, Virology 67:319–326.PubMedCrossRefGoogle Scholar
  34. Hartmann, D., Mohier, E., Leroy, C., and Hirth, L., 1976, Genetic analysis of alfalfa mosaic virus, Virology 74:470–480.PubMedCrossRefGoogle Scholar
  35. Haseloff, H. J., Goelet, P., Zimmern, D., Ahlquist, P., Dasgupta, R. J., and Kaesberg, P., 1984, Striking similarities in amino acid sequence among nonstructural proteins encoded by RNA viruses that have dissimilar genomic organization, Proc. Natl. Acad. Sci. 81:4358–4362.PubMedCrossRefGoogle Scholar
  36. Heytink, R. A., and Jaspars, E. M. J., 1974, RNA contents of abnormally long particles of certain strains of alfalfa mosaic virus, Virology 59:371–382.CrossRefGoogle Scholar
  37. Holland, J., Spindler, K., Horodyski, F., Grabau, E., Nichol, S., and van der Pol, S., 1982, Rapid evolution of RNA genomes, Science 215:1577–1585.PubMedCrossRefGoogle Scholar
  38. Honess, R. W., 1981, Complementation between phosphonoacetic acid resistant and sensitive variants of herpes simplex viruses: Evidence for an oligomeric protein with restricted intracellular diffusion as the determination of resistance and sensitivity, J. Gen. Virol. 57:297–306.PubMedCrossRefGoogle Scholar
  39. Houwing, C. J., and Jaspars, E. M. J., 1978, Coat protein binds to the 3′-terminal part of RNA 4 of alfalfa mosaic virus, Biochemistry 17:2927–2933.PubMedCrossRefGoogle Scholar
  40. Huisman, M. J., Sarachu, A. N., Alblas, F., and Bol, J. F., 1985, Alfalfa mosaic virus temperature-sensitive mutants II. Early functions encoded by RNA 1 and RNA 2, Virology (in press).Google Scholar
  41. Hull, R., 1969, Alfalfa mosaic virus, Adv. Virus Res. 15:365–433.PubMedCrossRefGoogle Scholar
  42. Hull, R., 1970, Studies on alfalfa mosaic virus. IV. An unusual strain, Virology 42:283–292.PubMedCrossRefGoogle Scholar
  43. Huttinga, H., and Mosch, W. H. M., 1976, Lilac ring mottle virus: A coat protein-dependent virus with a tripartite genome, Acta Hortic. 59:113–118.Google Scholar
  44. Jaspars, E. M. J., and Moed, J. R., 1966, The complexity of alfalfa mosaic virus, in: Viruses of Plants (A. B. R. Beemster and J. Dijkstra, eds.), pp. 188–195, North-Holland, Amsterdam.Google Scholar
  45. Joshi, S., Neeleman, L., Pley, C. W. A., Haenni, A. L., Chapeville, F., Bosch, L., and van Vloten-Doting, L., 1984, Non-structural alfalfa mosaic virus RNA-coded proteins present in tobacco leaf tissue, Virology 139:231–242.PubMedCrossRefGoogle Scholar
  46. Kiberstis, P., Loesch-Fries, L. S., and Hall, T. C., 1981, Viral protein synthesis in barley protoplasts infected with native and fractionated brome mosaic virus RNA, Virology 112:804–808.PubMedCrossRefGoogle Scholar
  47. King, A. M. Q., McCahon, D., Slade, W. R., and Newman, J. W. L, 1982, Recombination in RNA, Cell 29:921–928.PubMedCrossRefGoogle Scholar
  48. Koper-Zwarthoff, E. C., and Bol, J. F., 1980, Nucleotide sequence of the putative recognition site for coat protein in the RNAs of alfalfa mosaic virus and tobacco streak virus, Nucleic Acids Res. 8:3307–3318.PubMedCrossRefGoogle Scholar
  49. Koper-Zwarthoff, E. C., Brederode, F. T., Walstra, P., and Bol, J. F., 1979, Nucleotide sequence of the 3′-noncoding region of alfalfa mosaic virus RNA 4 and its homology with the genomic RNAs, Nucleic Acids Res. 7:1887–1900.PubMedCrossRefGoogle Scholar
  50. Kraal, B., 1975, Amino acid analysis of alfalfa mosaic virus coat proteins: An aid for viral strain identification, Virology 66:336–340.PubMedCrossRefGoogle Scholar
  51. Kuhn, C. W., and Wyatt, S. D., 1979, A variant of cowpea chlorotic mottle virus obtained by passage through beans, Phytopathology 69:621–624.CrossRefGoogle Scholar
  52. Kunkel, L. O., 1940, Publ. Am. Assoc. Adv. Sci. 12:22.Google Scholar
  53. Lane, L., 1974, The Bromoviruses, Adv. Virus Res. 19:151–220.PubMedCrossRefGoogle Scholar
  54. Lane, L. C., 1979, The nucleic acids of multipartite, defective and satellite plant viruses, in: Nucleic Acids in Plants, Volume 2 (T. C. Hall and J. W. Davies, eds.), pp. 65–110, CRC Press, Boca Raton, Fla.Google Scholar
  55. Lister, R. M., 1966, Possible relationship of virus-specific products of tobacco rattle virus infections, Virology 28:350–353.PubMedCrossRefGoogle Scholar
  56. Lister, R. M., 1968, Functional relationship between virus-specific products of infection by viruses of the tobacco rattle type, J. Gen. Virol. 2:43–58.CrossRefGoogle Scholar
  57. Matthews, R. E. F., 1981, Plant Virology, 2nd ed., Academic Press, New York.Google Scholar
  58. Mossop, D. W., and Francki, R. I. B., 1977, Association of RNA 3 with aphid transmission of cucumber mosaic virus, Virology 81:177–181.PubMedCrossRefGoogle Scholar
  59. Nassuth, A., and Bol, J. F., 1983, Altered balance of the synthesis of plus- and minus-strand RNAs induced by RNAs 1 and 2 of alfalfa mosaic virus in the absence of RNA 3, Virology 124:75–85.PubMedCrossRefGoogle Scholar
  60. Nassuth, A., ten Bruggencate, G., and Bol, J. F., 1983, Time course of alfalfa mosaic virus RNA and coat protein synthesis in cowpea protoplasts, Virology 125:75–84.PubMedCrossRefGoogle Scholar
  61. Nishiguchi, M., Motoyoshi, F., and Oshima, N., 1978, Behaviour of a temperature-sensitive strain of tobacco mosaic virus in tomato leaves and protoplasts, J. Gen. Virol. 39:53–61.CrossRefGoogle Scholar
  62. Oswald, J. W., Rozendaal, A., and van der Want, J. P. M., 1955, The alfalfa mosaic virus in the Netherlands, its effect on potato and a comparison with the potato aucuba mosaic virus, Proc. Conf. Potato Virus Dis., 2nd, Lisse-Wageningen, 1954, p. 137.Google Scholar
  63. Prabhakar, B. S., Haspel, M. V., McClintock, P. R., and Notkins, A. L., 1982, High frequency of antigenic variants among naturally occurring human Coxsackie B4 virus isolates identified by monoclonal antibodies, Nature (London) 300:374–376.CrossRefGoogle Scholar
  64. Racaniello, V. R., and Baltimore, D., 1981, Cloned polio virus complementary DNA is infectious in mammalian cells, Science 214:916–919.PubMedCrossRefGoogle Scholar
  65. Rao, A. L. N., and Francki, R. I. B., 1981, Comparative studies on tomato aspermy and cucumber mosaic viruses. VI. Partial compatibility of genome segments from the two viruses, Virology 114:573–575.PubMedCrossRefGoogle Scholar
  66. Rao, A. L. N., and Francki, R. I. B., 1982, Distribution of determinants for symptom production and host range on the three RNA components of cucumber mosaic virus, J. Gen. Virol. 61:197–205.CrossRefGoogle Scholar
  67. Reddy, D. V. R., and Black, L. M., 1977, Isolation and replication of mutant populations of wound tumor virions lacking certain genome segments, Virology 80:336–346.PubMedCrossRefGoogle Scholar
  68. Rees, M. W., and Short, M. N., 1982, The primary structure of cowpea chlorotic mottle virus coat protein, Virology 119:500–503.PubMedCrossRefGoogle Scholar
  69. Robinson, D. J., 1973, Inactivation and mutagenesis of tobacco rattle virus by nitrous acid, J. Gen. Virol. 18:215–222.PubMedCrossRefGoogle Scholar
  70. Roosien, J., 1983, Mutants of alfalfa mosaic virus, Ph.D. thesis, University of Leiden.Google Scholar
  71. Roosien, J., and van Vloten-Doting, L., 1982, Complementation and interference of ultraviolet-induced Mts mutants of alfalfa mosaic virus, J. Gen. Virol 63:189–198.CrossRefGoogle Scholar
  72. Roosien, J., and van Vloten-Doting, L., 1983, A mutant of alfalfa mosaic virus with an unusual structure, Virology 126:155–167.PubMedCrossRefGoogle Scholar
  73. Roosien, J., Sarachu, A. N., Alblas, F., and van Vloten-Doting, L., 1983a, An alfalfa mosaic virus RNA 2 mutant, which does not induce a hypersensitive reaction in cowpea plants, is multiplied to a high concentration in cowpea protoplasts, Plant Mol. Biol. 2:85–88.CrossRefGoogle Scholar
  74. Roosien, J., van Klaveren, P., and van Vloten-Doting, L., 1983b, Competition between the RNA 3 molecules of wild type alfalfa mosaic virus and the temperature-sensitive mutant Tbts 7(uv), Plant Mol. Biol. 2:113–118.CrossRefGoogle Scholar
  75. Sarachu, A. N., Nassuth, A., Roosien, J., van Vloten-Doting, L., and Bol, J. F., 1983, Replication of temperature-sensitive mutants of alfalfa mosaic virus in protoplasts, Virology 125:64–74.PubMedCrossRefGoogle Scholar
  76. Sarachu, A., Huisman, M. J., van Vloten-Doting, L., and Bol, J. F., 1985, Alfalfa mosaic virus temperature-sensitive mutants, I. Mutants defective in viral RNA and protein synthesis, Virology (in press).Google Scholar
  77. Smit, C. H., 1981, Multiple activation of the genome of alfalfa mosaic virus, Ph.D. thesis, University of Leiden.Google Scholar
  78. Smit, C. H., Roosien, J., van Vloten-Doting, L., and Jaspars, E. M. J., 1981, Evidence that alfalfa mosaic virus infection starts with three RNA-protein complexes, Virology 112:169–173.PubMedCrossRefGoogle Scholar
  79. Taliansky, M. E., Kaplan, I. B., Yarvekulg, L. V., Atabakov, T. I., Agronovsky, A. A., and Atabekov, J. G., 1982a, A study of TMV ts mutant Ni 2519. II. Temperature-sensitive behaviour of Ni 2519 RNA upon reassembly, Virology 118:309–316.PubMedCrossRefGoogle Scholar
  80. Taliansky, M. E., Malyshenko, S. I., Pshennikova, E. S., and Atabekov, J. G., 1982b, Plant virus transport function. II. Factor controlling virus host range, Virology 122:327–331.PubMedCrossRefGoogle Scholar
  81. Taniguchi, T., Palmieri, M., and Weissmann, C., 1978, Qß DNA-containing hybrid plasmids giving rise to Qß phage formation in the bacterial host, Nature (London) 274:223–228.CrossRefGoogle Scholar
  82. van Vloten-Doting, L., 1975, Coat protein is required for infectivity of tobacco streak virus: Biological equivalence of the coat proteins of tobacco streak and alfalfa mosaic virus, Virology 65:215–225.PubMedCrossRefGoogle Scholar
  83. van Vloten-Doting, L., 1983, Advantages of multipartite genomes of single-stranded RNA plant viruses in nature, for research, and genetic engineering, Plant Mol. Biol. Rep. 1:55–60.CrossRefGoogle Scholar
  84. van Vloten-Doting, L., and Jaspars, E. M. J., 1977, Plant covirus systems: Three component systems, in: Comprehensive Virology, Volume 11 (H. Fraenkel-Conrat and L. R. Wagner, eds.), pp. 1–53, Plenum Press, New York.Google Scholar
  85. van Vloten-Doting, L., and Neeleman, L., 1982, Translation of plant virus RNAs, in: Encyclopedia of Plant Physiology, Volume 14B (D. Boulter and B. Parthier, eds.), pp. 337–367, Springer-Verlag, Berlin.Google Scholar
  86. van Vloten-Doting, L., Hasrat, J. A., Oosterwijk, E., van’t Sant, P., Schoen, M. A., and Roosien, J., 1980, Description and complementation analysis of 13 temperature-sensitive mutants of alfalfa mosaic virus, J. Gen. Virol. 46:415–426.CrossRefGoogle Scholar
  87. van Vloten-Doting, L., Francki, R. I. B., Fulton, R. W., Kaper, J. M., and Lane, L. C., 1981, Tricornaviridae—A proposed family of plant viruses with tripartite, single-stranded RNA genomes, Intervirology 15:198–203.PubMedCrossRefGoogle Scholar
  88. van Vloten-Doting, L., Bol, J. F., Nassuth, A., Roosien, J., and Sarachu, A. N., 1983, Structure and function of plant virus genomes, in: NATO ASI Series, Volume A63 (O. Ciferri and L. Dure, III, eds.), pp. 437–449.Google Scholar
  89. Wu, J. H., Blakely, L. M., and Dimitman, J. E., 1969, Inactivation of a host resistance mechanism as an explanation for heat activation of TMV-infected bean leaves, Virology 37:658–666.PubMedCrossRefGoogle Scholar
  90. Wyatt, S. D., and Kuhn, C. W., 1979, Replication and properties of cowpea chlorotic mottle virus in resistant cowpeas, Phytopathology 69:125–129.CrossRefGoogle Scholar
  91. Yarwood, C. E., 1970, Reversible host adaptation in cucumber mosaic virus, Phytopathology 60:1117–1119.CrossRefGoogle Scholar
  92. Yarwood, C. E., 1979, Host passage effects with plant viruses, Adv. Virus. Res. 25:169–187.PubMedCrossRefGoogle Scholar
  93. Zuidema, D., Bierhuizen, M. F. A., Cornelissen, B. J. C., Bol, J. F., and Jaspars, E. M. J., 1983a, Coat protein binding sites on RNA 1 of alfalfa mosaic virus, Virology 125:361–369.PubMedCrossRefGoogle Scholar
  94. Zuidema, D., Bierhuizen, M. F. A., and Jaspars, E. M. J., 1983b, Removal of the N-terminal part of alfalfa mosaic virus coat protein interferes with the specific binding to RNA 1 and genome activation, Virology 129:225–260.CrossRefGoogle Scholar
  95. Zuidema, D., Cool, R. M., and Jaspars, E. M. J., 1984, Minimum requirements for specific binding of RNA and coat protein of alfalfa mosaic virus, Virology 136:282–292.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • L. van Vloten-Doting
    • 1
  1. 1.Department of BiochemistryUniversity of LeidenLeidenThe Netherlands

Personalised recommendations