Viral Genome Structure

  • Robert H. Symons
Part of the The Viruses book series (VIRS)


All characterized members of the Bromoviruses, Cucumoviruses, Ilarviruses, and also alfalfa mosaic virus (AMV) contain a tripartite genome in that the three largest of the four major encapsidated RNAs are required for infectivity. The Ilarviruses and AMV are distinguished from the two other virus groups by the additional requirement for infection of either a small amount of coat protein or its subgenomic mRNA, RNA 4 (reviewed in van Vloten-Doting and Jaspars, 1977). A further distinguishing feature is the inability of the RNAs of Ilarviruses and AMV to be aminoa-cylated in the presence of plant aminoacyl tRNA synthetases, whereas the RNAs of the Bromoviruses and Cucumoviruses that have been tested accept tyrosine (Hall, 1979; Koper-Zwarthoff and Bol, 1980). This division of the viruses into two groups on the basis of the ability or inability of their RNAs to be aminoacylated indicates significant differences in the biological and structural properties of the RNAs.


Mosaic Virus Coat Protein Cucumber Mosaic Virus Alfalfa Mosaic Virus Brome Mosaic Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlquist, P., Dasgupta, R., and Kaesbert, P., 1981a, Near identity of 3′ RNA secondary structure in Bromoviruses and cucumber mosaic virus, Cell 23:183–189.PubMedCrossRefGoogle Scholar
  2. Ahlquist, P., Lucknow, V., and Kaesberg, P., 1981b, Complete nucleotide sequence of brome mosaic virus RNA 3, J. Mol. Biol. 153:23–38.PubMedCrossRefGoogle Scholar
  3. Ahlquist, P., Dasgupta, R., and Kaesberg, P., 1984, Nucleotide sequence of the brome mosaic virus genome and its implications for viral replication, J. Mol. Biol. 172:369–383.PubMedCrossRefGoogle Scholar
  4. Atabekov, J. G., and Morozov, S. Y., 1979, Translation of plant virus messenger RNAs, Adv. Virus Res. 25:1–91.PubMedCrossRefGoogle Scholar
  5. Baralle, F. E., and Brownlee, G. G., 1978, AUG is the only recognizable signal sequence in the 5′ non-coding regions of eucaryotic mRNA, Nature (London) 274:84–87.PubMedCrossRefGoogle Scholar
  6. Barker, R. F., Jarvis, N. P., Thompson, D. V., Loesch-Fries, L. S., and Hall, T. C., 1983, Complete nucleotide sequence of alfalfa mosaic virus RNA 3, Nucleic Acids Res. 11:2881–2891.PubMedCrossRefGoogle Scholar
  7. Bol, J. F., Brederode, F. T., Fanze, G. C., and Rauh, D. C., 1975, Studies on sequence homology between the RNAs of alfalfa mosaic virus, Virology 65:1–15.PubMedCrossRefGoogle Scholar
  8. Bos, L., Huttinga, H., and Maat, D. Z., 1980, Spinach latent virus, a new Ilarvirus seed-borne in Spinacia oleracea, Neth. J. Plant Pathol. 86:79–98.CrossRefGoogle Scholar
  9. Brederode, F. T., Koper-Zwarthoff, E. C., and Bol, J. F., 1980, Complete nucleotide sequence of alfalfa mosaic virus RNA 4, Nucleic Acids Res, 8:2213–2223.PubMedCrossRefGoogle Scholar
  10. Casino, A., Cipollaro, M., Guerrini, A. M., Mastrocinque, G., Spena, A., and Scarlato, V., 1981, Coding capacity of complementary DNA strands, Nucleic Acids Res. 9:1499–1518.Google Scholar
  11. Collmer, C. W., Tousignant, M. E., and Kaper, J. M., 1983, Cucumber mosaic virus-assiciated RNA 5. X. The complete nucleotide sequence of a CARNA 5 incapable of inducing tomato necrosis, Virology 127:230–234.CrossRefGoogle Scholar
  12. Cornelissen, B. J. C., Brederode, F. T., Moormann, R. J. M., and Bol, J. F., 1983a, Complete nucleotide sequence of alfalfa mosaic virus RNA 1, Nucleic Acids Res. 11:1253–1265.PubMedCrossRefGoogle Scholar
  13. Cornelissen, B. J. C., Brederode, F. T., Veeneman, G. H., van Boom, J. H., and Bol, J. F., 1983b, Complete nucleotide sequence of alfalfa mosaic virus RNA 2, Nucleic Acids Res. 11:3019–3025.PubMedCrossRefGoogle Scholar
  14. Cornelissen, B. J. C., Janssen, H., Zuidema, D., and Bol, J. F., 1984, Complete nucleotide sequence of tobacco streak virus RNA 3, Nucleic Acids Res. 12:2427–2437.PubMedCrossRefGoogle Scholar
  15. Dasgupta, R., and Kaesberg, P., 1982, Complete nucleotide sequence of the coat protein messenger RNAs of brome mosaic virus and cowpea chlorotic mottle virus, Nucleic Acids Res. 10:703–713.PubMedCrossRefGoogle Scholar
  16. Dasgupta, R., Harada, F., and Kaesberg, P., 1976, Blocked 5′ termini in brome mosaic virus RNA, J. Virol. 18:260–267.PubMedGoogle Scholar
  17. Davies, J. W., and Verduin, B. J. M., 1979, In vitro synthesis of cowpea chlorotic mottle virus polypeptides, J. Gen. Virol. 44:545–549.CrossRefGoogle Scholar
  18. Goelet, P., Lomonossoff, G. P., Butler, P. J. G., Akam, M. E., Gait, K. J., and Kam, J., 1982, Nucleotide sequence of tobacco mosaic virus RNA, Proc. Natl. Acad. Sci. USA 79:5818–5822.PubMedCrossRefGoogle Scholar
  19. Gonda, T. J., and Symons, R. H., 1978, The use of hybridization analysis with complementary DNA to determine the RNA sequence homology between strains of plant viruses: Its application to several strains of Cucumoviruses, Virology 88:361–370.PubMedCrossRefGoogle Scholar
  20. Gonsalves, D., and Garnsey, S. M., 1975a, Functional equivalence of an RNA component and coat protein for infectivity of citrus leaf rugose virus, Virology 64:23–31.PubMedCrossRefGoogle Scholar
  21. Gonsalves, D., and Garnsey, S. M., 1975b, Nucleic acid components of citrus variegation virus and their activation by coat protein, Virology 67:311–318.PubMedCrossRefGoogle Scholar
  22. Gonsalves, D., and Garnsey, S. M,. 1975c, Infectivity of heterologous RNA-protein mixtures from alfalfa mosaic, citrus leaf rugose, citrus variegation, and tobacco steak viruses, Virology 67:319–326.PubMedCrossRefGoogle Scholar
  23. Gordon, K. H. J., and Symons, R. H., 1983, Satellite RNA of cucumber mosaic virus forms a secondary structure with partial 3′-terminal homology to genomal RNAs. Nucleic Acids Res. 11:947–960.PubMedCrossRefGoogle Scholar
  24. Gould, A. R., and Symons, R. H., 1977, Determination of the sequence homology between the four RNA species of cucumber mosaic virus by hybridization with complementary DNA, Nucleic Acids Res. 4:3787–3802.PubMedCrossRefGoogle Scholar
  25. Gould, A. R., and Symons, R. H., 1978, Alfalfa mosaic virus RNA: Determination of the sequence homology between the four RNA species and a comparison with the four RNA species of cucumber mosaic virus, Eux. J. Biochem. 91:269–278.CrossRefGoogle Scholar
  26. Gould, A. R., and Symons, R. H., 1982, Cucumber mosaic virus RNA 3: Determination of the nucleotide sequence provides the amino acid sequences of protein 3A and viral coat protein, Eur J. Biochem. 126:217–226.PubMedCrossRefGoogle Scholar
  27. Gould, A. R., and Symons, R. H., 1983, A molecular biological approach to relationships among viruses, Annu. Rev. Phytopathol. 21:179–199.CrossRefGoogle Scholar
  28. Gould, A. R., Palukaitis, P., Symons, R. H., and Mossop, D. W., 1978, Characterization of a satellite RNA associated with cucumber mosaic virus, Virology 84:443–455.PubMedCrossRefGoogle Scholar
  29. Gunn, M. R., and Symons, R. H., 1980a, Sequence homology at the 3′-termini of the four RNAs of alfalfa mosaic virus, FEBS Lett. 109:145–150.PubMedCrossRefGoogle Scholar
  30. Gunn, M. R., and Symons, R. H., 1980b, The RNAs of Bromoviruses: 3′-terminal sequences of the four brome mosaic virus RNAs and comparison with cowpea chlorotic mottle virus RNA 4, FEBS Lett. 115:77–82.PubMedCrossRefGoogle Scholar
  31. Habili, N., and Francki, R. I. B., 1974, Comparative studies on tomato aspermy and cucumber mosaic viruses. I. Physical and chemical studies, Virology 57:392–401.PubMedCrossRefGoogle Scholar
  32. Hall, T. C., 1979, Transfer RNA-like structures in viral genomes, Int. Rev. Cytol. 60:1–26.PubMedCrossRefGoogle Scholar
  33. Houwing, C. J., and Jaspars, E. M. J., 1978, Coat protein binds to 3′ terminal part of RNA 4 alfalfa mosaic virus, Biochemistry 17:2927–2933.PubMedCrossRefGoogle Scholar
  34. Kaper, J. M., and Tousignant, M. E., 1977, Cucumber mosaic virus-associated RNA 5. I. Role of host plant and helper strain in determining amount of associated RNA 5 with virions, Virology 80:186–195.PubMedCrossRefGoogle Scholar
  35. Kaper, J. M., and West, C. K., 1972, Polyacrylamide gel separation and molecular weight determination of the components of cucumber mosaic virus RNA, Prep. Biochem. 2:251–263.PubMedCrossRefGoogle Scholar
  36. Kaper, J. M., Tousignant, M. E., Diaz-Ruiz, J. R., and Tolin, S. A., 1978, Peanut stunt virus-associated RNA 5: Second tripartite genome virus with an associated satellite-like replicating RNA, Virology 88:166–170.PubMedCrossRefGoogle Scholar
  37. Koper-Zwarthoff, E. C., and Bol, J. F., 1980, Nucleotide sequence of the putative recognition site for coat protein in the RNAs of alfalfa mosaic virus and tobacco streak virus, Nucleic Acids Res. 8:3307–3318.PubMedCrossRefGoogle Scholar
  38. Koper-Zwarthoff, E. C., Brederode, F. T., Veeneman, G., van Boom, J. H., and Bol, J. F., 1980, Nucleotide sequences at the 5′-termini of the alfalfa mosaic virus RNAs and the intercistronic junction in RNA 3, Nucleic Acids Res. 8:5635–5647.PubMedCrossRefGoogle Scholar
  39. Kozak, M., 1981, Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes, Nucleic Acids Res. 9:5233–5252.PubMedCrossRefGoogle Scholar
  40. Lane, L. C., 1981, Bromoviruses, in: Handbook of Plant Virus Infections and Comparative Diagnosis (E. Kurstak, ed.), pp. 333–376, Elsevier/North-Holland, Amsterdam.Google Scholar
  41. Lister, R. M., and Saksena, K. N., 1976, Some properties of tulare apple mosaic and ILAR viruses suggesting grouping with tobacco streak virus, Virology 70:440–450.PubMedCrossRefGoogle Scholar
  42. Lot, H., and Kaper, J. M., 1976, Physical and chemical differentiation of three strains of cucumber mosaic virus and peanut stunt virus, Virology 74:209–222.PubMedCrossRefGoogle Scholar
  43. Moosic, J. P., McKean, D. J., Shih, D. S., and Kaesberg, P., 1983, Primary structure of brome mosaic virus coat protein, Virology 129:517–520.PubMedCrossRefGoogle Scholar
  44. Mossop, D. W., and Francki, R. I. B., 1978, Survival of a satellite RNA in vivo and its dependence on cucumber mosaic virus for replication, Virology 86:562–566.PubMedCrossRefGoogle Scholar
  45. Mossop, D. W., and Francki, R. I. B., 1979, The stability of satellite RNAs in vivo and in vitro, Virology 94:243–253.PubMedCrossRefGoogle Scholar
  46. Murant, A. F., and Mayo, M. A., 1982, Satellites of plant viruses, Annu. Rev. Phytopathol. 20:49–70.CrossRefGoogle Scholar
  47. Nassuth, A., Alblas, F., and Bol, J. F., 1981, Localization of genetic information involved in the replication of alfalfa mosaic virus, J. Gen. Virol. 53:207–214.CrossRefGoogle Scholar
  48. Owens, R. A., and Kaper, J. M., 1977, Cucumber mosaic virus-associated RNA 5. II. In vitro translation in a wheat germ protein-synthesis system, Virology 80:196–203.PubMedCrossRefGoogle Scholar
  49. Peden, K. W. C., and Symons, R. H., 1973, Cucumber mosaic virus contains a functionally divided genome, Virology 53:487–492.PubMedCrossRefGoogle Scholar
  50. Pinck, L., 1975, The 5′-end groups of alfalfa mosaic virus RNAs are m7G5′ppp5′Gp, FEBS Lett. 59:24–28.PubMedCrossRefGoogle Scholar
  51. Rao, A. L. N., and Francki, R. I. B., 1982, Distribution of determinants for symptom production and host range on the three RNA components of cucumber mosaic virus, J. Gen. Virol 61:197–205.CrossRefGoogle Scholar
  52. Ravelonandro, M., Godefroy-Colburn, T., and Pinck, L., 1983, Structure of the 5′-terminal untranslated region of the genomic RNAs from two strains of alfalfa mosaic virus, Nucleic Acids Res. 11:2815–2826.PubMedCrossRefGoogle Scholar
  53. Rees, N. W., and Short, M. N., 1982, The primary structure of cowpea chlorotic mottle virus coat protein, Virology 119:500–503.PubMedCrossRefGoogle Scholar
  54. Rezaian, M. A., Williams, R. H. V., Gordon, K. H. J., Gould, A. R., and Symons, R. H., 1984, Nucleotide sequence of cucumber mosaic virus RNA 2 reveals a translation product significantly homologous to corresponding proteins of other viruses, Eur. J. Biochem. 143:277–284.PubMedCrossRefGoogle Scholar
  55. Richards, K. E., Jonard, G., Jacquemond, M., and Lot, H., 1978, Nucleotide sequence of cucumber mosaic virus associated RNA 5, Virology 89:395–408.PubMedCrossRefGoogle Scholar
  56. Samac, D. A., Nelson, S. E., and Loesch-Fries, L. S., 1983, Virus protein synthesis in alfalfa mosaic virus infected alfalfa protoplasts, Virology 131:455–462.PubMedCrossRefGoogle Scholar
  57. Sargan, D. R., Gregory, S. P., and Butterworth, P. H. W., 1982, A possible novel interaction between the 3′-end of 18S ribosomal RNA and the 5′-leader sequence of many eukar-yotic messenger RNAs, FEBS Lett. 147:133–136.PubMedCrossRefGoogle Scholar
  58. Schwinghamer, M. W., and Symons, R. H., 1977, Translation of the four major RNA species of cucumber mosaic virus in plant and animal cell-free systems and in toad oocytes, Virology 79:88–108.PubMedCrossRefGoogle Scholar
  59. Shih, D. S., and Kaesberg, P., 1976, Translation of the RNAs of brome mosaic virus: The monocistronic nature of RNA 1 and RNA 2, J. Mol. Biol. 103:77–88.PubMedCrossRefGoogle Scholar
  60. Symons, R. H., 1975, Cucumber mosaic virus RNA contains 7-methylguanosine at the 5′-terminus of all four RNA species, Mol. Biol. Rep. 2:277–285.PubMedCrossRefGoogle Scholar
  61. Symons, R. H., 1978, The two-step purification of ribosomal RNA and plant viral RNA by Polyacrylamide gel electrophoresis, Aust. J. Biol. Sci. 31:25–37.Google Scholar
  62. Symons, R. H., 1979, Extensive sequence homology at the 3′-terminus of the four RNAs of cucumber mosaic virus, Nucleic Acids Res. 7:825–837.PubMedCrossRefGoogle Scholar
  63. van der Meer, F. A., and Huttinga, H., 1979, Lilac ring mottle virus, CMI/AAB Descriptions of Plant Viruses No. 201.Google Scholar
  64. van Vloten-Doting, L., 1975, Coat protein is required for infectivity of tobacco streak virus: Biological equivalence of the coat proteins of tobacco streak virus and alfalfa mosaic virus, Virology 65:215–225.PubMedCrossRefGoogle Scholar
  65. van Vloten-Doting, L., and Jaspars, E. M. J., 1972, The uncoating of alfalfa mosaic virus by its own RNA, Virology 48:699–708.PubMedCrossRefGoogle Scholar
  66. van Vloten-Doting, L., and Jaspars, E. M. J., 1977, Plant covirus systems: Three components systems, in: Comprehensive Virology (H. Fraenkel-Conrat and R. Wagner, eds.), Volume 11, pp. 1–53, Plenum Press, New York.Google Scholar
  67. van Vloten-Doting, L., and Neeleman, L., 1982, Translation of plant virus RNA′s, in: Nucleic Acids and Proteins in Plants (B. Parthier and D. Boulter, eds.), pp. 337–367, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  68. van Vloten-Doting, L., Dubelaar, M., and Bol, J. F., 1982, Open reading frame in the minus strand of two plus type RNA viruses, Plant Mol. Biol. 1:155–158.CrossRefGoogle Scholar
  69. Verduin, B. J. M., 1978, Degradation of cowpea chlorotic mottle virus ribonucleic acid in situ, J. Gen. Virol. 39:131–147.CrossRefGoogle Scholar
  70. Walter, G., and Doolittle, R. F., 1983, Antibodies against synthetic peptides, in: Genetic Engineering: Principles and Methods (J. K. Setlow and A. Hollaender, eds.), Volume 5, pp. 61–69, Plenum Press, New York.Google Scholar
  71. Wilson, P. A., and Symons, R. H., 1981, The RNAs of Cucumoviruses: 3′-terminal sequence analysis of two strains of tomato aspermy virus, Virology 112:342–345.PubMedCrossRefGoogle Scholar
  72. Yamaguchi, K., Hidaka, S., and Miura, K., 1982, Relationship between structure of the 5′ non-coding region of viral mRNA and efficiency in the initiation step of protein synthesis in a eukaryotic system, Proc. Natl. Acad. Sci. USA 79:1012–1016.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Robert H. Symons
    • 1
  1. 1.Department of BiochemistryThe University of AdelaideAdelaideAustralia

Personalised recommendations