Advertisement

MAGEC

A Program for the Definitive Calibration of the Glass Electrode
  • Peter M. May
  • David R. Williams
Part of the Modern Inorganic Chemistry book series (MICE)

Abstract

“The glass electrode is to solution chemistry what silicon chips are to computers— the central controlling component.”(1) It is clear, however, that an uncalibrated electrode is not worth much more than a stirring rod.

Keywords

Strong Acid Glass Electrode Protonation Constant Boundary Constraint Titration Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. W. Linder, P. M. May, R. G. Torrington, and D. R. Williams, Analysis Using Glass Electrodes, Open University Press, Milton Keynes, (1984).Google Scholar
  2. 2.
    . Manual of Symbols and Terminology for Physiochemical Quantities and Units, 1973 Edition, International Union of Pure and Applied Chemistry (1975).Google Scholar
  3. 3.
    H. M. Irving, M. G. Miles, and L. D. Pettit, A Study of Some Problems in Determining the Stoi-cheiometric Proton Dissociation Constants of Complexes by Potentiometric Titrations Using a Glass Electrode, Anal. Chim. Acta 38, 475–488 (1967).CrossRefGoogle Scholar
  4. 4.
    G. Mattock and D. M. Band, in Glass Electrodes For Hydrogen Ion and Other Cations G. Eisenman, ed., Dekker, New York (1967), Chaps. 2 and 9.Google Scholar
  5. 5.
    G. Anderegg, in Proc. Summer School on Stability Constants (P. Paoletti, R. Barbucci, and L. Fabbrizzi, eds.), Bivigliano, Florence, Italy (1974), pp.11.Google Scholar
  6. 6.
    D. R. Williams, in Proc. Summer School on Stability Constants (P. Paoletti, R. Barbucci, and L. Fabbrizzi, eds.), Bivigliano, Florence, Italy (1974), pp. 125.Google Scholar
  7. 7.
    K. Schwabe, in Electroanalytical Chemistry, Vol. 10 in Advances in Analytical Chemistry and Instrumentation (H. W. Nürnberg, ed.), Wiley, London (1974), Chap. 7, pp. 495.Google Scholar
  8. 8.
    M. Filoména, G. F. G. Camoes, and A. K. Covington, New Procedure for Calibrating Glass Electrodes, Anal. Chem. 46, 1547 (1974).CrossRefGoogle Scholar
  9. 9.
    H. Rossotti, The Study of Ionic Equilibria, Longman, London (1978).Google Scholar
  10. 10.
    A. Albert and E. P. Serjeant, The Determination of Ionisation Constants, Chapman Hall, London (1971).Google Scholar
  11. 11.
    P. M. May, D. R. Williams, P. W. Linder, and R. G. Torrington, The Use of Glass Electrodes for the Determination of Formation Constants. Part I. A Definitive Method for Calibration, Talanta 29, 249–256 (1982).CrossRefGoogle Scholar
  12. 12.
    G. Gran, Determination of the Equivalence Point in Potentiometric Titrations, Pt I, Acta Chem. Scand. 4, 559–567 (1950);CrossRefGoogle Scholar
  13. 12a.
    G. Gran, Determination of the Equivalence Point in Potentiometric Titrations, Pt. II, Analyst 77, 661–671 (1952).CrossRefGoogle Scholar
  14. 13.
    F. J. C. Rossotti and H. Rossotti, Potentiometric Titrations Using Gran Plots, J. Chem. Ed. 42, 375–378 (1965).CrossRefGoogle Scholar
  15. 14.
    J. A. Neider and R. Mead, A Simplex Method for Function Minimization, Comput. J. 7, 308–313 (1965).Google Scholar
  16. 15.
    A. Sabatini, A. Vacca, and P. Gans, MINIQUAD—A General Computer Programme for the Computation of Formation Constants from Potentiometric Data, Talanta 21, 53–57 (1974).CrossRefGoogle Scholar
  17. 16.
    P. Gans, A. Sabatini, and A. Vacca, An Improved Computer Program for the Computation of Formation Constants from Potentiometric Data, Inorg. Chim. Acta 18, 237–239 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Peter M. May
    • 1
  • David R. Williams
    • 1
  1. 1.Department of Applied Chemistry, Institute of Science and TechnologyUniversity of WalesCardiffUK

Personalised recommendations