The Determination of Formation Constants

An Overview of Computational Methods for Data Processing
  • David J. Leggett
Part of the Modern Inorganic Chemistry book series (MICE)


The interaction of metal ions and ligands, in solution, giving rise to equilibrium mixtures of coordination complexes has been studied systematically since 1941,(1) although many references atest to 30 or more years of earlier research. Until about 1960 data obtained from these studies were subjected to graphical analysis. Many valuable contributions were made by Hazel and Francis Rossotti (their book(2) remains the definitive text on the subject) and by Lars Gunnar Sillen.(3) The impact of Sillen and co-workers on solution equilibria has not been restricted to innovative graphical procedures. In 1961(4) the first general computer program for the evaluation of formation constants from equilibrium data was announced. Many programs have followed from several independent research groups, including the LETAGROP(5) family of computational techniques.


Stability Constant Formation Constant Mass Balance Equation Analytical Derivative Golden Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bjerrum, Metal Ammine Formation in Aqueous Solution, Haase, Copenhagen (1941, reprinted 1957).Google Scholar
  2. 2.
    F. J. C. Rossotti and H. S. Rossotti, The Determination of Stability Constants, McGraw-Hill, New York (1961).Google Scholar
  3. 3.
    L. G. Sillen, in Coordination Chemistry, A.C.S. Monograph (A. E. Martell, ed.), Vol. 8, pp. 491–541, Van Nostrand Reinhold Co., New York (1972).Google Scholar
  4. 4.
    D. Dyrssen, N. Ingri, and L. G. Sillen, “Pit-Mapping”—A General Approach for Computer Refinement of Equilibrium Constants, Acta Chem. Scand. 15, 694–696 (1961).CrossRefGoogle Scholar
  5. 5.
    N. Ingri and L. G. Sillen, High-Speed Computers as a Supplement to Graphical Methods. IV. An ALGOL Version of LETAGROP VRID, Arkiv Kemi 23, 97–121 (1964).Google Scholar
  6. 6.
    A. M. Bond, Some Suggested Calculation Procedures and the Variation in Results Obtained from Different Calculation Methods for Evaluation of Concentration Stability Constants of Metal Ions in Aqueous Solution, Coord. Chem. Rev. 6, 377–405 (1971).CrossRefGoogle Scholar
  7. 7.
    F. J. C. Rossotti, H. S. Rossotti, and R. J. Whewell, The Use of Electronic Computing Techniques in the Calculation of Stability Constants, J. Inorg. Nucl. Chem. 33, 2051–2065 (1971).CrossRefGoogle Scholar
  8. 8.
    P. Gans, Numerical Methods for Data-Fitting Problems, Coord. Chem. Rev. 19, 99–124 (1976).CrossRefGoogle Scholar
  9. 9.
    F. Gaizer, Computer Evaluation of Complex Equilibria, Coord. Chem. Rev. 27, 195–222 (1979).CrossRefGoogle Scholar
  10. 10.
    P. Gans, Computer-Assisted Methods for the Investigation of Solution Equilibria, Adv. Mole. Relax. Interaction Proc. 18, 139–148 (1980).CrossRefGoogle Scholar
  11. 11.
    D. J. Leggett, The Determination of Stability Constants: A Review, Am. Lab. 14(1), 29–35 (1982).Google Scholar
  12. 12.
    G. C. Allen and R. F. McMeeking, Deconvolution of Spectra by Least-Squares Fitting, Anal. Chim. Acta. (Computer Techniques and Optimization) 103, 73–108 (1978).Google Scholar
  13. 13.
    G. J. Hahn in Statistics (R. F. Hirsch, ed.), 1977 Eastern Analytical Symposium, The Franklin Institute Press, Philadelphia, Pennsylvania (1978).Google Scholar
  14. 14.
    R. M. Izatt, D. Eatough, R. L. Snow, and J. J. Christensen, Computer Evaluation of Entropy Titration Data. Calorimetric Determination of Log β i, ΔH i, and ΔSi Values for the Silver(I) and Copper(II) Pyridine Systems, J. Phys. Chem. 72, 1208–1213 (1968).CrossRefGoogle Scholar
  15. 15.
    W. C. Davidon, Variable Metric Method for Minimization, AEC(US) Research and Development ANL-5990, Argonne National Laboratory, Argonne, Illinois, 1959; See also ANL-5990 (Rev. 2) (1966).Google Scholar
  16. 16.
    K. Nagano and D. E. Metzler, Machine Computation of Equilibrium Constants and Plotting of Spectra of Individual Ionic Species in the Pyridoxal-Alanine System, J. Am. Chem. Soc. 89, 2891–2900 (1967).CrossRefGoogle Scholar
  17. 17.
    D. L. Leussing, Schiff Base Complexes. A Numerical Study of the Nickel(H)-Pyruvate-Glycinate System Using a High Speed Computer, Talanta 11, 189–201 (1964).CrossRefGoogle Scholar
  18. 18.
    S. Natansohn, J. I. Krugler, J. E. Lester, M. S. Chagnon, and R. S. Finocchiaro, Stability Constants of Complexes of Molydbate and Tungstate Ions with o-Hydroxy Aromatic Ligands, J. Phys. Chem. 84, 2972–2980 (1980)CrossRefGoogle Scholar
  19. 19.
    D. J. Leggett and W. A. E. McBryde, General Computer Program for the Computation of Stability Constants from Absorbance Data, Anal. Chem. 47, 1065–1070 (1975).CrossRefGoogle Scholar
  20. 20.
    H. J. Kieffer, Sequential Minimax Search for a Maximum, Proc. Am. Math. Soc. 4, 269–282 (1970).Google Scholar
  21. 21.
    P. Gans and H. M. N. H. Irving, The Calculation of Stability Constants of Weak Complexes from Spectrophotometric Data, J. Inorg. Nucl. Chem. 34, 1885–1890 (1972).CrossRefGoogle Scholar
  22. 22.
    W. Spendley, G. R. Hext, and F. R. Himsworth, Sequential Applications of Simplex Designs in Optimization and Evolutionary Operation, Technometrics 4, 441–461 (1962).CrossRefGoogle Scholar
  23. 23.
    J. A. Neider and R. Mead, A Simplex Method for Function Mimimization, Comput. J. 7, 308–313 (1965).Google Scholar
  24. 24.
    S. N. Deming and L. R. Parker, A Review of Simplex Optimization in Analytical Chemistry, Crit. Rev. Anal. Chem. 7, 187–202 (1978).CrossRefGoogle Scholar
  25. 25.
    G. R. Walsh, Methods of Optimization, Wiley, New York (1975).Google Scholar
  26. 26.
    M. J. D. Powell, An Efficient Method for Finding the Minimum of a Function of Several Variables without Calculating Derivatives, Comput. J. 7, 155–162 (1964).CrossRefGoogle Scholar
  27. 27.
    M. J. D. Powell, A Method for Minimizing a Sum of Squares of Non-Linear Functions Without Calculating Derivatives, Comput. J. 7, 303–307 (1965).Google Scholar
  28. 28.
    R. Fletcher and M. J. D. Powell, A Rapidly Convergent Descent Method for Minimization, Comput. J. 6, 163–168 (1963).Google Scholar
  29. 29.
    A Sabatini, A. Vacca, and P. Gans, MINIQUAD—A General Computer Programme for the Computation of Formation Constants from Potentiometrie Data, Talanta 21, 53–77 (1974).CrossRefGoogle Scholar
  30. 30.
    P. Gans, A New Method for Computing Vibrational Force Constants, Chem. Commun. 1504–1505 (1970).Google Scholar
  31. 31.
    P. Gans, Force Constant Computations. Part II. Some Model Calculations to Test the Fletcher-Powell Method and to Analyse the Ill-Conditioned Force Constant Refinement, J. Chem Soc. (A) 2017–2024 (1971).Google Scholar
  32. 32.
    P. Gans and A. Vacca, Application of the Davidon-Fletcher-Powell Method to the Calculation of Stability Constants, Talanta 21, 45–51 (1974).CrossRefGoogle Scholar
  33. 33.
    I. G. Sayce, Computer Calculations of Equilibrium Constants of Species Present in Mixtures of Metal Ions and Complexing Agents, Talanta 22, 1397–1421 (1968).CrossRefGoogle Scholar
  34. 34.
    A. Sabatini and A. Vacca, A New Method for Least Squares Refinement of Stability Constants, J. Chem. Soc. Dalton 1693–1698 (1972).Google Scholar
  35. 35.
    E. W. Baumann, Determination of the Stability Constants of Hydrogen and Aluminum Fluorides with a Fluoride Selective Electrode, J. Inorg. Nucl. Chem. 31, 3155–3162 (1969).CrossRefGoogle Scholar
  36. 36.
    W. H. Swann, Report on the Development of a New Direct Search Method of Optimization, I.C.I. Ltd., Central Instrument Laboratory Research Note 64/3 (1964).Google Scholar
  37. 37.
    J. P. Chandler, Minimum of a Function of Several Variables, Program 66.1, QCPE, Indiana University, Bloomington, Indiana, 1966.Google Scholar
  38. 38.
    J. J. Kankare, Computation of Equilibrium Constants for Multicomponent Systems from Spectrophotometric Data, Anal. Chem. 42, 1322–1326 (1970).CrossRefGoogle Scholar
  39. 39.
    S. L. S. Jacoby, J. S. Kowalik, and J. T. Pizzo, Iterative Methods for Nonlinear Optimization Problems, Prentice-Hall, Englewood Cliffs, New Jersey (1972).Google Scholar
  40. 40.
    P. R. Adby and M. A. H. Dempster, Introduction to Optimization Methods, Chapman and Hall, London (1974).Google Scholar
  41. 41.
    L. G. Sillen and B. Warnqvist, High-speed Computer as a Supplement to Graphical Methods. VI. A Strategy for Two-level Adjustment of Common and “Group” Parameters. Some Features that Avoid Divergence, Arkiv Kemi 31, 315–339 (1968).Google Scholar
  42. 42.
    D. J. Leggett and W. A. E. McBryde, Picoline-2-Aldehyde Thiosemicarbazone: The Dissociation Constants and Reaction with Various Metals, Talanta 21, 781–789 (1974).CrossRefGoogle Scholar
  43. 43.
    J. A. Thomson, Computer-Assisted Studies on Quinizarin-2-Sulfonic Acid and its Complexation with Iron(III), Ph.D. thesis, University of Waterloo, Waterloo, Ontario, Canada (1970).Google Scholar
  44. 44.
    M. Suchanek and L. Sucha, The Use of the Program SPEKTFOT for the Computation of the Equilibrium Constants and the Molar Absorption Coefficients of Substances in Solution, Sbornik Vys. Sk. Chemickotechnol. Praze 13, 41–57 (1978).Google Scholar
  45. 45.
    H. O. Hartley, The Modified Gauss-Newton Method for the Fitting of Non-Linear Regression Functions by Least Squares, Technometrics 3, 269–280 (1961).CrossRefGoogle Scholar
  46. 46.
    R. S. Tobias and Z. Z. Hugus, Least Squares Computer Calculations of Chloride Complexing of Tin(II), and the Validity of the Ionic Medium Method, J. Phys. Chem. 65, 2165–2169 (1961).CrossRefGoogle Scholar
  47. 47.
    R. S. Tobias and M. Yasuda, Computer Analysis of Stability Constants in Three-Component Systems with Polynuclear Complexes, Inorg. Chem. 2, 1307–1310 (1963).CrossRefGoogle Scholar
  48. 48.
    D. D. Perrin and I. G. Sayce, Computer Calculations of Equilibrium Concentrations in Mixture of Metal Ions and Complexing Species, Talanta 14, 833–842 (1967).CrossRefGoogle Scholar
  49. 49.
    R. J. Motekaitis and A. E. Martell, Program PKAS: A Novel Algorithm for the Computation of Successive Protonation Constants, Can. J. Chem. 60, 168–173 (1982).CrossRefGoogle Scholar
  50. 50.
    R. J. Motekaitis and A. E. Martell, BEST—A New Program for Rigorous Calculation of Equilibrium Parameters of Complex Multicomponent Systems, Can. J. Chem. 60, 2403–2409 (1982).CrossRefGoogle Scholar
  51. 51.
    C. E. Atkins, S. E. Park, J. A. Blaszak, and D. R. McMillin, A Two-Level Approach to Deconvo-luting Absorbance Data Involving Multiple Species. Applications to Copper Systems, Inorg. Chem. 23, 569–572 (1984).CrossRefGoogle Scholar
  52. 52.
    Ting-Po I and G. H. Nancollas, EQUIL—A General Computational Method for the Calculation of Solution Equilibria, Anal. Chem. 44, 1940–1950 (1972).CrossRefGoogle Scholar
  53. 53.
    D. J. Leggett, Machine Computation of Equilibrium Concentrations-Some Practical Considerations, Talanta 24, 535–542 (1977).CrossRefGoogle Scholar
  54. 54.
    D. D. Perrin and I. G. Sayce, Stability Constants of Polynuclear Mercaptoacetate Complexes of Nickel and Zinc, J. Chem. Soc.(A) 82–89 (1967).Google Scholar
  55. 55.
    D. J. Leggett and W. A. E. McBryde, Metal Ion Interactions of Picoline-2-Aldehyde Thiosemicarbazone, Talanta 22, 1005–1011 (1975).CrossRefGoogle Scholar
  56. 56.
    D. J. Leggett, POLAG—A General Computer Program to Calculate Stability Constants from Polarographie Data, Talanta 27, 787–793 (1980).CrossRefGoogle Scholar
  57. 57.
    F. Gaizer and M. Mate, Computerized Calculations of Complex Equilibria, I. A. General Program for the Evaluation of Spectrophotometric Equilibrium Measurements, Acta Chim. Sci. Hung. 103, 355–363 (1980).Google Scholar
  58. 58.
    F. Gaizer, Computerized Calculations of Complex Equilibria, II. The Calculation of the Protonation Constants of Polyfunctional Ligands and the Stability Constants of Metal Complexes from Potentiometrie Data, Acta Chim. Sci. Hung. 103, 397–403 (1980).Google Scholar
  59. 59.
    F. Gaizer and A. Puskas, A Desk-Computer Program for Calculation of the Parameters of Acid-Base Titration Curves and Protonation or Metal-Complex Stability Constants from Potentiometrie Data, Talanta 28, 565–573 (1981).CrossRefGoogle Scholar
  60. 60.
    F. Gaizer and A. Puskas, Desk-Computer Program for Evaluation of Complex Equilibria from Spectrophotometric Data, Talanta 28, 925–929 (1981).CrossRefGoogle Scholar
  61. 61.
    W. R. Harris, C. J. Carrano, S. R. Cooper, S. R. Sofen, A. E. Avdeef, J. V. McArdle, and K. N. Raymond, Coordination Chemistry of Microbial Iron Transport Compounds. 19. Stability Constants and Electrochemical Behavior of Ferric Enterobactin and Model Complexes, J. Am. Chem. Soc. 101, 6097–6104 (1979).CrossRefGoogle Scholar
  62. 62.
    L. P. Aldridge and T. M. Seward, HACK—A FORTRAN Program for Calculating Equilibrium Constants from Solubility Data at Elevated Temperatures, Department of Scientific and Industrial Research, Chemistry Division, Lower Hutt, New Zealand, Report C.D. 2227 (1976).Google Scholar
  63. 63.
    S. Feldberg, P. Klotz, and L. Newman, Computer Evaluation of Equilibrium Constants from Spectro-photometric Data, Inorg. Chem. 11, 2860–2865 (1972).CrossRefGoogle Scholar
  64. 64.
    K. A. Levenberg, A Method for the Solution of Certain Nonlinear Problems in Least Squares, Quart. Appl. Math. 2, 164–168 (1944).Google Scholar
  65. 65.
    D. W. Marquardt, An Algorithm for Least Squares Estimation of Nonlinear Parameters, J. Soc. Indust. Appl. Math. 11, 431–441 (1963).CrossRefGoogle Scholar
  66. 66.
    R. Fletcher, A Modified Marquardt Subroutine for Non-Linear Least Squares, A.E.R.E. (U.K.) Harwell Technical Report No. R6799 (1971).Google Scholar
  67. 67.
    A. D. Zuberbuhler and T. A. Kaden, Handling of Electronic Absorption Spectra with a Desk-Top Computer, Talanta 26, 1111–1118 (1979).CrossRefGoogle Scholar
  68. 68.
    H. Gampp, M. Maeder, and A. D. Zuberbuhler, General Non-Linear Least-Squares Program for the Numerical Treatment of Spectrophotometric Data on a Single-Precision Game Computer, Talanta 27, 1037–1045 (1980).CrossRefGoogle Scholar
  69. 69.
    H. Gampp, M. Maeder, A. D. Zuberbuhler, and T. A. Kaden, Microprocessor-Controlled System for Automatic Acquisition of Potentiometrie Data and their Non-Linear Least-Squares Fit in Equilibrium Studies, Talanta 27, 513–518 (1980).CrossRefGoogle Scholar
  70. 70.
    A.D. Zuberbuhler and Th. A. Kaden, TITFIT, A Comprehensive Program for Numerical Treatment of Potentiometric Data by Using Analytical Derivatives and Automatically Optimized Subroutines with the Newton-Gauss-Marquardt Algorithm, Talanta 29, 201–206 (1982).CrossRefGoogle Scholar
  71. 71.
    I. Nagypal, I. Paka, and L. Zekany, Analytical Evaluation of the Derivatives Used in Equilibrium Calculations, Talanta 25, 549–550 (1978).CrossRefGoogle Scholar
  72. 72.
    G. Arena, E. Rizzarelli, and S. Sammartano, A Non-Linear Least-Squares Approach to the Refinement of all Parameters Involved in Acid-Base Titrations, Talanta 26, 1–14 (1979).CrossRefGoogle Scholar
  73. 73.
    J. Greenstadt, On the Relative Efficiencies of Gradient Methods, Math Comput .21, 360–371 (1967).CrossRefGoogle Scholar
  74. 74.
    P. Gans, A. Sabatini, and A. Vacca, An Improved Computer Program for the Computation of Formation Constants from Potentiometrie Data, Inorg. Chim. Acta 18, 237–239 (1976).CrossRefGoogle Scholar
  75. 75.
    R. M. Alcock, F. R. Hartley, and D. E. Rogers, A Damped Non-Linear Least-Squares Program (DALSFEK) for the Evaluation of Equilibrium Constants from Spectrophotometric and Potentiometrie Data, J. C. S. Dalton 115–123 (1978).Google Scholar
  76. 76.
    F. R. Hartley, C. Burgess, and R. Alcock, Solution Equilibria, Ellis Horwood, J. Wiley, London (1980).Google Scholar
  77. 77.
    K. Momoki, H. Sato, and H. Ogawa, Calculation of Successive Formation Constants from Polarographie Data Using a High-Speed Computer, Anal. Chem. 39, 1072–1079 (1967).CrossRefGoogle Scholar
  78. 78.
    L. Meites, Automatic Classification of Chemical Behaviour by Sequential Hypothesization and Multi-parametric Curve-Fitting. III. Fully Computerized Elucidation of Polarographic Data on Stepwise Complex Formation, Talanta 22, 733–738 (1975).CrossRefGoogle Scholar
  79. 79.
    L. Meites, Some New Techniques for the Analysis and Interpretation of Chemical Data, Crit. Rev. Anal. Chem. 8, 1–53 (1979).CrossRefGoogle Scholar
  80. 80.
    B. Hedstrom, Equilibria in Systems with Poly nuclear Complex Formation, Acta Chem. Scand. 9, 613–621 (1955).CrossRefGoogle Scholar
  81. 81.
    R. Osterberg, The Copper(II) Complexity of O-Phosphorylethanolamine, Acta Chem. Scand. 14, 471–485 (1960).CrossRefGoogle Scholar
  82. 82.
    H. C. Freeman and R.-P. Martin, Potentiometrie Study of Equilibria in Aqueous Solution Between Copper(H) Ions, l (or D)-Histidine and L-Threonine and Their Mixtures, J. Biol. Chem. 244, 4823–4830 (1969).Google Scholar
  83. 83.
    B. Sarkar and T. P. A. Kruck, Theoretical Considerations and Equilibrium Conditions in Analytical Potentiometry. Computer Facilitated Mathematical Analysis of Equilibria in a Multicomponent System, Can. J. Chem. 51, 3541–3548 (1973).CrossRefGoogle Scholar
  84. 84.
    W. A. E. McBryde, On An Extension of the Use of pH-Titrations for Determination of Free Metal and Free Ligand Concentrations During Metal Complex Formation, Can. J. Chem. 51, 3572–3576 (1973).CrossRefGoogle Scholar
  85. 85.
    R. Guevremont and D. L. Rabenstein, A Study of the Osterberg-Sarkar-Kruck Method for Evaluating Free Metal and Free Ligand Concentrations in Solutions of Complex Equilibria, Can. J. Chem. 55, 4211–4221 (1977).CrossRefGoogle Scholar
  86. 86.
    T. B. Field and W. A. E. McBryde, Determination of Stability Constants by pH Titrations: A Critical Examination of Data Handling, Can. J. Chem. 56, 1202–1211 (1978).CrossRefGoogle Scholar
  87. 87.
    A. Avdeef and K. N. Raymond, Free Metal and Free Ligand Concentrations Determined From Titrations Using Only a pH Electrode. Partial Derivatives in Equilibrium Studies, Inorg. Chem. 18, 1605–1611 (1979).CrossRefGoogle Scholar
  88. 88.
    K. Vadasdi, On Determining the Composition of Species Present in a System from Potentiometric Data, J. Phys. Chem. 78, 816–820 (1974).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • David J. Leggett
    • 1
  1. 1.Texas DivisionDow Chemical U.S.A.FreeportUSA

Personalised recommendations