Cell Isolation Techniques: A Critical Review

  • M. R. Hardeman
Part of the NATO ASI Series book series (NSSA, volume 88)


Labeling blood cells with a radioactive tracer is not a new technique. In 1940 Hahn and Hevesy measured the blood volume of a rabbit by labeling the animal’s erythrocytes with radioactive phosphorus. Since then many experimental and clinical investigations using radioactive labeled cellular blood elements have been described in the literature. Their application has become increasingly popular during the past few years, due to the development of very efficient labeling techniques and the availability of suitable radionuclides. The following criteria need to be fulfilled by an ideal blood cell labeling method.


Immunol Method Centrifugal Elutriation Separation Chamber Radioactive Phosphorus Percoll Density Gradient Centrifugation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. Hawker and C. E. Hall, Differential uptake of 111-Indium blood platelets and granulocytes, Thromb Hemosta 46: 1 (1981).Google Scholar
  2. 2.
    S. R. Turner, J. A. Tainer, W. S. Lynn, Biogenesis of chemotactic molecules by the Arachidonate lipoxygenase system of platelets, Nature 257: 680 (1975).PubMedCrossRefGoogle Scholar
  3. 3.
    N. D. Charkes, M. A. Dugan, L. S. Malmud, H. Stern, et al, Labeled leucocytes in thrombi, Lancet 2: 600 (1974).PubMedCrossRefGoogle Scholar
  4. 4.
    C. Figdor, Separation of human leucocytes by physical methods, Thesis, University of Amsterdam (1982).Google Scholar
  5. 5.
    P. T. Bodel, B. A. Nichols, D. F. Bainton, Appearance of peroxidase reactivity within the rough endo-plasmic reticulum of blood monocytes after surface adherence, J Exp Med 145: 264 (1977).PubMedCrossRefGoogle Scholar
  6. 6.
    P. S. Vassar, E. M. Levy, D. E. Brooks, Studies on the electrophoretic separability of B and T human lymphocytes, Cell Immunol 21: 257 (1976).PubMedCrossRefGoogle Scholar
  7. 7.
    A. Boyum, Isolation of mononuclear cells and granulocytes from human blood, Scand J Clin Lab Invest 21 (Suppl 97): 77 (1968).Google Scholar
  8. 8.
    W. D. Johnson, B. Bei, Z. A. Cohn, The separation long-term cultivation and maturation of the human monocyte, J Exp Med 146: 1613 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    F. A. W. Splinter, M. Beudeker, A. van Beek, Changes in cell density induced by isopaque, Exp Cell Res 111: 245 (1978).PubMedCrossRefGoogle Scholar
  10. 10.
    C. L. Berger and R. L. Edelson, Comparison of lymphocyte function after isolation by Ficoll-Hypaque floation or elutriation, J Invest Dermatol 73: 231 (1979).PubMedCrossRefGoogle Scholar
  11. 11.
    J. T. Kurnick, L. Osterberg, M. Stegagno, A. K. Kimura, et al, A rapid method for the separation of functional lymphoid cell populations of human and animal origin of PVP-Silica (Percoll) density gradients, Scand J Immuno 10: 563 (1979).CrossRefGoogle Scholar
  12. 12.
    J. A. Roth and M. L. Kaeberle, Isolation of neutrophils and eosinophils from the peripheral blood of cattle and comparison of the functional activities, J Immunol Methods 45: 153 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    C. Bruch, P. Kovacs, E. Ruber, T. Fliender, Studies on the inhibitory effect of granulocytes on human granulopoiesis in agar cultures, Exp Hematol 6: 337 (1978).PubMedGoogle Scholar
  14. 14.
    H. Pertoft, K. Rubin, L. Kjellen, T. C. Laurent, et al, The viability of cells grown or centrifuged in a new density gradient medium, Percoll, Exp Cell Res 110: 449 (1977).PubMedCrossRefGoogle Scholar
  15. 15.
    M. L. Thakur, J. P. Lavender, R. M. Arnot, D. J. Silvester, et al, Indium-111-labeled autoloques leukocytes in man, J Nucl Med 18: 1014 (1977).PubMedGoogle Scholar
  16. 16.
    D. C. Dooley and T. Takahaski, The effect of osmotic stress on the function of the human granulocyte, Exp Hematol 9: 731 (1981).PubMedGoogle Scholar
  17. 17.
    D. G. Pennington, N. L. Y. Lee, A. E. Roxburgh, J. R. McGready, Platelet density and size: the interpretation of heterogeneity, Br J Hematol 34: 365 (1976).CrossRefGoogle Scholar
  18. 18.
    S. St. J. Wakefield, J. S. Gale, M. V. Berridge, T. W. Jordan, et al, Is Percoll innocuous to cells? Biochem J 202: 795 (1982).Google Scholar
  19. 19.
    S. D. Nathanson, P. L. Zamfirescu, E. I. Drew, S. Wilbur, Two-step separation of human peripheral blood monocytes on discontinuous density gradients of collodial silic-polyvinylpyrrolídinone, J Immunol Methods 18: 225 (1977).PubMedCrossRefGoogle Scholar
  20. 20.
    D. C. Dooley, J. T. Simpson, H. T. Meryman, Isolation of large numbers of fully viable human neutrophils: a preparative technique using Percoll Density Gradient Centrifugation, Exp Hematol 10: 591 (1982).PubMedGoogle Scholar
  21. 21.
    R. Hjorth, A. Jonsson, P. Vretblad, A rapid method for purification of human granulocytes using Percoll. A comparison with dextran sedimentation, J Immunol Methods 43: 95 (1981).PubMedCrossRefGoogle Scholar
  22. 22.
    S. H. Saverymuttu, A. M. Peters, H. J. Danpure, H. J. Reavy, et al, Lung transit of Indium-111-labeled granulocytes. Relation to labeling techniques Scand J Hematol 30: 151 (1983).CrossRefGoogle Scholar
  23. 23.
    W. S. Bont and J. E. de Vries, in: “Cell Populations,” E. Reid, ed., Ellis Horwood, Chicester (1979).Google Scholar
  24. 24.
    P. E. Lindahl, Principle of a counter-streaming centrifuge for the separation of particles of different sizes, Nature 161: 648 (1948).PubMedCrossRefGoogle Scholar
  25. 25.
    T. J. Lionetti, S. M. G. Hunt, P. S. Lin, S. R. Kurtz, et al, Preservation of human granulocytes II. Characteristics of granulocytes obtained by counter flow centrifugation, Transfusion 17: 465 (1977).PubMedCrossRefGoogle Scholar
  26. 26.
    J. F. Jemionek, T. J. Contreras, J. E. French, L. J. Shields, Technique for increased granulocyte recovery from human whole blood by counter flow centrifugation-elutriation. I. In vitro analysis, Transfusion 19:120 (1979).Google Scholar
  27. 27.
    C. B. Thompson, K. A. Eaton, S. M. Princiotta, C. A. Ruskin, et al, Size-dependent platelet subpopulation: relationship of platelet volume to ultrastructure, enzymatic activity and function, Br J Hematol 50: 509 (1982).CrossRefGoogle Scholar
  28. 28.
    C. B. Thompson, J. A. Jakubowksi, P. G. Quinn, D. Deykin, et al, Platelet size as a determinant of platelet function, J Lab Clin Med 101: 205 (1983).PubMedGoogle Scholar
  29. 29.
    R. J. Sanderson, N. F. Palmer, K. E. Bird, Separation of red cells into age groups by counter flow centrifugation, Biophys J 15: 321 (1975).Google Scholar
  30. 30.
    C. G. Figdor, W. S. Bont, J. de Roos, et al, Isolation of functionally different human monocytes by counter flow centrifugation elutriation, Blood 60: 46 (1982).PubMedGoogle Scholar
  31. 31.
    R. J. Sanderson, K. E. Bird, N. F. Palmer, J. Brenman, Design principles for a counter flow centrifugation cell separation chamber, Anal Biochem 71: 615 (1976).PubMedCrossRefGoogle Scholar
  32. 32.
    J. F. Jemionek, T. J. Contreras, D. N. Stevens, F. W. Bernhards, et al, Use of modified rotor and enlarged separation chamber for isolation of human granulocytes by counter flow centrifugation elutriation, Cryobiology 17: 230 (1980).PubMedCrossRefGoogle Scholar
  33. 33.
    W. L. van Es and W. S. Bont, An improved method for the fractionation of human blood cells by centrifugal elutriation, Anal Biochem 103: 295 (1980).PubMedCrossRefGoogle Scholar
  34. 34.
    C. G. Figdor, W. S. Bont, J. E. de Vries, W. L. van Es, Isolation of large numbers of highly-purified lymphocytes and monocytes with a modified centrifugal elutriation technique, J Immunol Methods 40: 275 (1981).PubMedCrossRefGoogle Scholar
  35. 35.
    P. H. M. de Mulder, J. M. C. Wessels, D. A. Rosenbrand, J. B. J. M. Smeulders, et al, Monocyte purification with counter flow centrifugation monitored by continuous flow cytometry, J Immunol Methods 47: 31 (1981).PubMedCrossRefGoogle Scholar
  36. 36.
    A. D. Nunn and G. Gagne, The recovery, in small volume, of cells from the Beckman JE-6 Elutriator rotor, Transfusion 18: 599 (1978).PubMedCrossRefGoogle Scholar
  37. 37.
    M. D. Persidsky and L. S. Olson, Granulocyte separation by modified centrifugal elutriation system, Proc Soc Exp Biol Med 157: 599 (1978).PubMedGoogle Scholar
  38. 38.
    C. G. Figdor, W. L. van Es, J. M. M. Leemans, W. S. Bont: A centrifugal elutriation system to separate small numbers of cells, J Immunol Methods 68: 73 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • M. R. Hardeman
    • 1
  1. 1.Department of Internal Medicine Academic Medical CenterUniversity of AmsterdamThe Netherlands

Personalised recommendations