Physiology and Pathophysiology of Human Neutrophils

  • Ron S. Weening
  • Dirk Roos
Part of the NATO ASI Series book series (NSSA, volume 88)


Circulating blood phagocytes, including neutrophils (polymorphonuclear leukocytes [PMN]) as well as monocytes, can recognize, ingest, kill, and, to a certain extent, digest microbes. These blood cells, therefore, are of crucial importance in host defense against invading microorganisms. Disorders in this line of defense are accompanied by serious, recurrent bacterial and fungal infections. In the last decade, a number of these often inherited disorders have been classified and their origin recognized.


Chronic Granulomatous Disease Cytoplasmic Granule Microtubule Assembly Specific Granule Phagocytic Vacuole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. J. Klebanoff and R. A. Clark, “The Neutrophil: Function and Clinical Disorders,” North-Holland Publishing Company, Amsterdam/New York/Oxford (1978).Google Scholar
  2. 2.
    D. F. Bainton, J. L. Ullyot, M. G. Farquhar, The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. Origin and content of azurophil and specific granules, J Exp Med 134: 907 (1971).PubMedCrossRefGoogle Scholar
  3. 3.
    U. Bretz and M. Baggiolini, Biochemical and morphological characterization of azurophil and specific granules of human neutrophilic polymorphonuclear leukocytes, J Cell Biol 63: 251 (1974).PubMedCrossRefGoogle Scholar
  4. 4.
    P. A. Chervenick and D. R. Boggs, Bone marrow colonies: stimulation in vitro by supernatant from incubated human blood cells, Science 169: 691 (1970).PubMedCrossRefGoogle Scholar
  5. 5.
    M. A. Lichtman and R. I. Weed, Alteration of the cell periphery during granulocyte maturation: relationship to cell function, Blood 39: 301 (1972).PubMedGoogle Scholar
  6. 6.
    J. I. Gallin, E. K. Gallin, H. L. Malech, E. B. Cramer, Structural and ionic events during leukocyte chemotaxis, in: “Leukocyte Chemotaxis: Methods, Physiology and Clinical Implications,” J. I. Gallin and P.G. Quie, eds., Raven Press, New York (1978).Google Scholar
  7. 7.
    E. L. Becker, A. T. Davis, R. D. Estensen, P. G. Quie, Cytochalasin B. IV. Inhibition and stimulation of chemotaxis of rabbit and human polymorphonuclear leukocytes, J Immunol 108: 396 (1972).PubMedGoogle Scholar
  8. 8.
    L. A. Boxer, E. T. Hedley-Whyte, T. P. Stossel, Neutrophil actin dysfunction and abnormal neutrophil behavior, New Engl J Med 293: 1093 (1974).CrossRefGoogle Scholar
  9. 9.
    E. L. Becker and H. J. Showell, The ability of chemotactic factors to induce lysosomal enzyme release. II. The mechanism of release, J Immunol 112: 2055 (1974).PubMedGoogle Scholar
  10. 10.
    J. I. Gallin and A. S. Rosenthal, The regulatory role of divalent cations in human granulocyte chemotaxis: evidence for an association between calcium exchanges and microtubule assembly, J Cell Biol 62: 594 (1974).PubMedCrossRefGoogle Scholar
  11. 11.
    M. M. Boucek and R. Snyderman, Calcium influx requirement of human neutrophil chemotaxis: inhibition by lanthanum chloride, Science 194: 905 (1976).CrossRefGoogle Scholar
  12. 12.
    E. K. Gallin and J. I. Gallin, Interaction of chemotactic factors with human macrophages: induction of transmembrane potential changes, J Cell Biol 75: 277 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    I. Rivkin, J. Rosenblatt, E. L. Becker, The role of cyclic AMP in the chemotactic responsiveness and spontaneous motility of rabbit peritoneal neutrophils. The inhibition of neutrophil movement and the elevation of cyclic AMP levels by catecholamines, prostaglandins, theophylline, and cholera toxin, J Immunol 115: 1126 (1975).PubMedGoogle Scholar
  14. 14.
    H. R. Hill, R. D. Estensen, P. G. Quie, N. A. Hogan, N. D. Goldberg, Modulation of human neutrophil chemotactic responses by cyclic 3’,5’-guanosine monophosphate and cyclic 3’,5’-adenosine monophosphate, Metabolism 24: 447 (1975).PubMedCrossRefGoogle Scholar
  15. 15.
    N. D. Goldberg, M. K. Haddox, S. E. Nicol, D. B. Glass, C. H. Sanford, F. A. Kuehl, Jr., R. Estensen, Biologic regulation through opposing influences of cyclic GMP and cyclic AMP: the Yin-Yang hypothesis, in: “Advances in Cyclic Nucleotide Research,” G. I. Drummond, P. Greengard, and G. A. Robison, eds., Raven Press, New York (1975).Google Scholar
  16. 16.
    L. A. Boxer, A. M. Watanabe, M. Rister, H. R. Besch, Jr., J. Allen, R. L. Baehner, Correction of leukocyte function in Chediak-Higashi syndrome by ascorbate, New Engl J Med 295: 1041 (1976).PubMedCrossRefGoogle Scholar
  17. 17.
    R. S. Weening, E. P. Schoorel, D. Roos, M. L. J. van Schaik, A. A. Voetman, A. A. M. Bot, A. M. Batenburg-Plenter, Ch. Willems, W. P. Zeijlemaker, A. Astaldi, Effect of ascorbate on abnormal neutrophil, platelet, and lymphocyte function in a patient with the Chediak-Higashi syndrome, Blood 57: 856 (1981).Google Scholar
  18. 18.
    C. J. van Oss and C. F. Gillman, Phagocytosis as a surface phenomenon. I. Contact angles and phagocytosis of nonopsonized bacteria, J Reticuloendothel Soc 12: 283 (1972).PubMedGoogle Scholar
  19. 19.
    C. J. van Oss and C. F. Gillman, Phagocytosis as a surface phenomenon. II. Contact angles and phagocytosis of encapsulated bacteria before and after opsonization by specific antiserum and complement, J Reticuloendothel Soc 12: 497 (1972).PubMedGoogle Scholar
  20. 20.
    M. E. Miller and U. S. Nillson, A familial deficiency of the phagocytosis-enhancing activity of serum related to a dysfunction of the fifth component of complement (C5), New Engl J Med 282: 354 (1970).PubMedCrossRefGoogle Scholar
  21. 21.
    S. I. Rosenfeld, J. Baum, R. T. Steigbigel, J. P. Leddy, Hereditary deficiency of the fifth component of complement in man. H. Biological properties of C5-deficient human serum, J Clin Invest 57: 1635 (1976).PubMedCrossRefGoogle Scholar
  22. 22.
    A. Constantopoulos, V. A. Najjar, J. W. Smith, Tuftsin deficiency: a new syndrome with defective phagocytosis, J Pediatr 80: 564 (1972).PubMedCrossRefGoogle Scholar
  23. 23.
    T. P. Stossel, Phagocytosis: recognition and ingestion, Semin Hematol 12: 83 (1975).PubMedGoogle Scholar
  24. 24.
    F. M. Griffin, Jr., J. A. Griffin, J. E. Leider, S. C. Silverstein, Studies on the mechanism of phagocytosis. I. Requirement for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane, J Exp Med 142: 1263 (1975).PubMedCrossRefGoogle Scholar
  25. 25.
    A. J. Sbarra and M. L. Karnovsky, The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes, J Biol Chem 234: 1355 (1959).PubMedGoogle Scholar
  26. 26.
    P. R. Craddock, Y. Yawata, L. van Santen, S. Gilberstadt, S. Silvis, H. S. Jacob, Acquired phagocyte dysfunction. A complication of the hypophosphatemia of parenteral hyperalimentation, New Engl J Med 290: 1403 (1974).PubMedCrossRefGoogle Scholar
  27. 27.
    D. F. Bainton, Sequential degranulation of the two types of polymorphonuclear leukocyte granules during phagocytosis of microorganisms, J Cell Biol 58: 249 (1973).PubMedCrossRefGoogle Scholar
  28. 28.
    I. M. Goldstein, D. Roos, H. B. Kaplan, G. Weissman, Complement and immunoglobulins stimulate superoxide production by human leukocytes independently of phagocytosis, J Clin Invest 56: 1155 (1975).PubMedCrossRefGoogle Scholar
  29. 29.
    G. Weissmann, I. Goldstein, S. Hoffstein, G. Chauvet, R. Robineaux, Yin-Yang modulation of lysosomal enzyme release from polymorphonuclear leukocytes by cyclic nucleotides, Ann NY Acad Sci 256: 222 (1975).PubMedCrossRefGoogle Scholar
  30. 30.
    P. Davies, A. C. Allison, R. I. Fox, M. Polyzonis, A. D. Haswell, The exocytosis of polymorphonuclear-leucocyte lysosomal enzymes induced by cytochalasin B, Biochem J 128: 78 (1972).Google Scholar
  31. 31.
    B. M. Babior, Oxygen-dependent microbial killing by phagocytes, New Engl J Med 298: 659 (1978).PubMedCrossRefGoogle Scholar
  32. 32.
    A. W. Segal, D. Webster, O. T. G. Jones, A. C. Allison, Absence of a newly-described cytochrome b from neutrophils of patients with chronic granulomatous disease, Lancet 11: 446 (1978).CrossRefGoogle Scholar
  33. 33.
    R. van Zwieten, R. Weyer, M. N. Hamers, R. S. Weening, D. Roos, Extracellular proton release by stimulated neutrophils, J Clin Invest 68: 310 (1981).PubMedCrossRefGoogle Scholar
  34. 34.
    S. J. Klebanoff, Iodination of bacteria: a bactericidal mechanism, J Exp Med 126: 1063 (1967).PubMedCrossRefGoogle Scholar
  35. 35.
    R. I. Lehrer and M. J. Cline, Leukocyte myeloperoxidase deficiency and disseminated candidiasis: the role of myeloperoxidase in resistance to candida infection, J Clin Invest 48: 1478 (1969).PubMedCrossRefGoogle Scholar
  36. 36.
    H. J. Sips and M. N. Hamers, Mechanism of the bactericidal action of myeloperoxidase: increase permeability of the Escherichia coli cell envelope, Infect Immun 31: 11 (1981).PubMedGoogle Scholar
  37. 37.
    J. M. Zgliczynski, R. J. Selvaraj, B. B. Paul, T. Stelmaszynska, P. K. F. Poskitt, A. J. Sbarra, Chlorination by the myeloperoxidase-H2O2-Cl-antimicrobial system at acid and neutral pH, Proc Soc Exp Biol Med 154: 418 (1977).PubMedGoogle Scholar
  38. 38.
    Y. Ericsson and H. Lundbeck, Antimicrobial effect in vitro on the ascorbic acid oxidation. I. Effect on bacteria, fungi, and viruses in pure culture, Acta Pathol Microbiol Scand 37: 493 (1955).PubMedCrossRefGoogle Scholar
  39. 39.
    T. E. Miller, Killing and lysis of gram-negative bacteria through the synergistic effect of hydrogen peroxide, ascorbic acid, and lysozyme, J Bacteriol 98: 949 (1969).PubMedGoogle Scholar
  40. 40.
    S. J. Weiss, G. W. King, A. F. LoBuglio, Evidence for hydroxyl radical generation by human monocytes, J Clin Invest 60: 370 (1977).PubMedCrossRefGoogle Scholar
  41. 41.
    A. I. Tauber and B. M. Babior, Evidence for hydroxyl radical production by human neutrophils, J Clin Invest 60: 374 (1977).PubMedCrossRefGoogle Scholar
  42. 42.
    M. S. Jensen and D. F. Bainton, Temporal changes in pH within the phagocytic vacuole of the polymorphonuclear neutrophilic leukocyte, J Cell Biol 56: 379 (1973).PubMedCrossRefGoogle Scholar
  43. 43.
    D. M. Chipman and N. Sharon, Mechanism of lysozyme action. Lysozyme is the first enzyme for which the relation between structure and function has become clear, Science 65: 454 (1969).CrossRefGoogle Scholar
  44. 44.
    H. Odeberg and I. Olsson, Anti-bacterial activity of cationic proteins from human granulocytes, J Clin Invest 56: 1118 (1975).PubMedCrossRefGoogle Scholar
  45. 45.
    J. K. Spitznagel, M. R. Cooper, A. E. McCall, L. R. DeChatelet, I. R. H. Welsh, Selective deficiency of granules associated with lysozyme and lactoferrin in human polymorphs (PMN) with reduced microbicidal capacity, J Clin Invest 51: 93a (1972).Google Scholar
  46. 46.
    R. B. Johnston, Jr. and S. L. Newman, Chronic granulomatous disease. Pediatric Clinics of North-America, vol. 24 /2: 365, WB Saunders, Philadelphia (1977).Google Scholar
  47. 47.
    R. B. Johnston, Jr. and R. L. Baehner, Improvement of leukocyte bactericidal activity in chronic granulomatous disease, Blood 35: 350 (1970).PubMedGoogle Scholar
  48. 48.
    G. L. Mandell and E. W. Hook, Leukocyte bactericidal activity in chronic granulomatous disease: correlation of bacterial hydrogen peroxide production and susceptibility to intracellular killing, J Bacteriol 100: 531 (1969).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Ron S. Weening
    • 1
  • Dirk Roos
    • 2
    • 3
  1. 1.Department of PediatricsAcademic Medical CenterAmsterdamThe Netherlands
  2. 2.Red Cross Blood Transfusion ServiceCentral Laboratory of the NetherlandsThe Netherlands
  3. 3.Laboratory for Experimental and Clinical ImmunologyUniversity of AmsterdamThe Netherlands

Personalised recommendations