Radiolabeled Red Blood Cells: Status, Problems, and Prospects

  • Suresh C. Srivastava
Part of the NATO ASI Series book series (NSSA, volume 88)


Of the various cellular blood elements, red cells (RBC) are 1) most abundant; 2) easy to separate and handle; 3) less susceptible to damage from physical or chemical manipulations; 4) not as dependent on energy and nutritional requirements in vitro, and 5) more amenable to labeling with radionuclides due to the availability of a variety of cellular transport mechanisms and of hemoglobin, which is rich in active metal-binding sites. Consequently, red cells have served as simple, convenient, and useful models for the study of, among other things, cellular transport phenomena and membrane structure and function(1, 2).


Label Yield Blood Pool Imaging Random Label Cardiac Blood Pool Splenic Sequestration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Bishop and D. M. Surgenor, eds., “The Red Blood Cell,” Academic Press, New York (1964).Google Scholar
  2. 2.
    R. Whittam, “Transport and Diffusion in Red Blood Cells,” Edward Arnold, London (1964).Google Scholar
  3. 3.
    M. Pollycove and M. Tono, Studies of the erythron, Semin Nucl Med 5:11–61 (1975).PubMedCrossRefGoogle Scholar
  4. 4.
    N. I. Berlin, Determination of red blood cell life-span, JAMA 188:375 (1964).Google Scholar
  5. 5.
    M. S. Wheby and W. H. Crosby, The gastrointestinal tract and iron absorption, Blood 22:416 (1963).PubMedGoogle Scholar
  6. 6.
    L. Saylor and C. A. Finch, Determination of iron absorption using two isotopes of iron, Am J Physiol 172:372 (1953).PubMedGoogle Scholar
  7. 7.
    M. Pollycove, Iron metabolism and kinetics, Semin Hematol 3:235 (1966).PubMedGoogle Scholar
  8. 8.
    M. Kesse-Elias, E. Gyfteki, B. Malamos, Fe-59 and Cr-51 studies in aplastic anemia and myelosclerosis, Acta Haematol 39:139 (1968).CrossRefGoogle Scholar
  9. 9.
    J. A. Cohen and M. G. P. Warringa, The fate of P32-labeled diisopropylfluorophosphate in the human body and its use as a labeling agent in the study of the turnover of blood plasma and red cells, J Clin Invest 33:459 (1954).PubMedCrossRefGoogle Scholar
  10. 10.
    L. E. Bratteby, L. Garby, B. Wadman, Studies on erythrokinetics in infancy. XII. Survival in adult recipients of cord blood red cells labeled in vitro with di-isopropyl fluorophosphate (DF-32-P), Acta Pediatr Scand 57:305 (1968).CrossRefGoogle Scholar
  11. 11.
    S. J. Gray and K. Sterling, The tagging of red cells and plasma proteins with radioactive chromium, J Clin Invest 29:1604 (1950).PubMedCrossRefGoogle Scholar
  12. 12.
    F. G. Ebaugh, Jr., C. P. Emerson, J. F. Ross, The use of radioactive Chromium-51 as an erythrocyte-tagging agent for the determination of red cell survival in vivo, J Clin Invest 32:1260 (1953).PubMedCrossRefGoogle Scholar
  13. 13.
    R. C. Read, G. W. Wilson, F. H. Gardner, The use of radioactive sodium chromate to evaluate the life span of the red cell in health and in certain hematologic disorders, Am J Med Sci 228:40 (1954).PubMedCrossRefGoogle Scholar
  14. 14.
    H. A. Pearson, The binding of Cr-51 to hemoglobin. I. In vitro studies, Blood 22:218 (1963).PubMedGoogle Scholar
  15. 15.
    H. N. Wagner, Jr., I. M. Weiner, J. G. McAfee, et al, 1-mercuri2-hydroxypropane (MHP): a new pharmaceutical for visualization of the spleen by radioisotope scanning, Arch Intern Med 113:696 (1964).PubMedCrossRefGoogle Scholar
  16. 16.
    K. Mayer, A. Dwyer, J. S. Laughlin, Spleen scanning using ACD damaged red cells tagged with Cr-51, J Nucl Med 11:455 (1970).PubMedGoogle Scholar
  17. 17.
    P. M. Johnson, E. H. Wood, S. L. Morring, Splenic scintillation scanning, Am J Roentgen 86:575 (1961).Google Scholar
  18. 18.
    F. Spinelli-Ressi, Scintillation scanning of the spleen with red cells labeled with Chromium-51, in: “Medical Radioisotope Scanning”, vol II, IAEA, Vienna (1964).Google Scholar
  19. 19.
    P. M. Johnson, J. C. Herion, S. L. Mooring, Scintillation scanning of the normal human spleen utilizing sensitized radioactive erythrocytes, Radiology 74:99 (1960).PubMedGoogle Scholar
  20. 20.
    M. L. Thakur, D. Dees, S. S. L. Harwig, et al, Labeling blood components with 8-hydroxyquinoline chelates: simplified procedure and mechanism of labeling, J Labeled Compds Radiopharm 13:177 (1977).Google Scholar
  21. 21.
    M. L. Thakur, Gallium-67 and Indium-111 radiopharmaceuticals, Int J Appl Radiat Isot 28:183 (1977).PubMedCrossRefGoogle Scholar
  22. 22.
    M. L. Thakur, M. J. Welch, J. H. Joist, et al, Indium-111-labeled platelets: studies on preparation and evaluations of in vitro and in vivo functions, Thromb Res 9:345 (1976).PubMedCrossRefGoogle Scholar
  23. 23.
    M. L. Thakur, J. P. Lavender, R. N. Arnot, et al, Indium-111labeled autologous leukocytes in man, J Nucl Med 18:1014 (1977).PubMedGoogle Scholar
  24. 24.
    M. J. Welch, M. L. Thakur, R. E. Coleman, et al, Gallium-68labeled red cells and platelets: new agents for positron tomography, J Nucl Med 18:558 (1977).PubMedGoogle Scholar
  25. 25.
    M. Murrell, U. Scheffel, J. M. Whipple, et al, In-ill-oxine as a red blood cell label, Proceedings of Second International Congress World Federation of Nuclear Medicine Biology, Washington, D.C., p. 130 (1978).Google Scholar
  26. 26.
    G. G. Winzelberg, F. P. Castronovo, R. J. Callahan, et al, In-111-oxine-labeled red cells for detection of simulated lower gastrointestinal bleeding in an animal model, Radiology 135:455 (1980).PubMedGoogle Scholar
  27. 27.
    H. Sinn, P. Georgi, J. Clorius, et al, Die markierung von erythrozyten mit radioactiven indiumisotopen, Nuclear medizin 13:180 (1974).PubMedGoogle Scholar
  28. 28.
    H. Sinn and D. J. Silvester, Simplified cell labeling with Indium-111-acetylacetone, Br J Radiol 52:758 (1979).PubMedCrossRefGoogle Scholar
  29. 29.
    C. J. Mathias, W. A. Heaton, M. J. Welch, et al, Comparison of In-111-oxine and In-111-acetylacetone for the labeling of cells: in vivo and in vitro biological testing, Int J Appl Radiat Isot 32:651 (1981).PubMedCrossRefGoogle Scholar
  30. 30.
    A. Ferrant, N. Dehasque, N. Leners, et al, Scintigraphy with In-111-labeled red cells in intermittent gastrointestinal bleeding, J Nucl Med 21:844 (1980).PubMedGoogle Scholar
  31. 31.
    R. L. Beckman, G. L. Pittenger, D. P. Swenson, et al, Blood loss measured with Indium-111-labeled red blood cells in dogs, Radiology 148:243 (1983).PubMedGoogle Scholar
  32. 32.
    D. J. Hnatowich, A method for the preparation and quality control of Ga-68 radiopharmaceuticals, J Nucl Med 16:764 (1975).PubMedGoogle Scholar
  33. 33.
    D. D. Pant, J. J. Coupal, W. J. Shih, et al, A new approach to Gallium-67 labeling of human erythrocytes and platelets, J Nucl Med 24:P123 (1983).Google Scholar
  34. 34.
    M. R. vewanjee, J. H. neo, J. A. nosemaii, et al, Luulum-III-tropolone, a new tracer for platelet labeling, Radiology 145:149 (1982).Google Scholar
  35. 35.
    H. I. Glass, A. Brant, J. C. Clark, et al, Measurement of blood volume using red cells labeled with radioactive carbon monoxide, J Nucl Med 9:571 (1968).PubMedGoogle Scholar
  36. 36.
    G. Hevesy and G. Nylin, Application of K-42-labeled red corpuscles in blood volume measurements, Acta Physiol Scand 24:285 (1952).PubMedCrossRefGoogle Scholar
  37. 37.
    S. A. Berson and R. S. Yalow, The use of K-42- or P-32-labeled erythrocytes and I-131-tagged human serum albumin in simultaneous blood volume determinations, J Clin Invest 31:572 (1952).PubMedCrossRefGoogle Scholar
  38. 38.
    D. M. Ackery, J. Singh, P. Wyeth, Enzyme-inhibitor mediated red cell labeling, Proceedings Fourth International Symposium Radiopharmicological Chemistry Julich, KFA (1982).Google Scholar
  39. 39.
    H. Jackson, Studies with erythrocytes labeled with radioactive p-iodophenylhydroxylamine, Nature 172:80 (1953).PubMedCrossRefGoogle Scholar
  40. 40.
    D. Van Dyke, H. O. Anger, M. Pollycove, The effect of erythropoeitic stimulation on marrow distribution in man, rabbit, and rat as shown by Fe-59 and Fe-52, Blood 24:356 (1964).Google Scholar
  41. 41.
    J. A. Penner, Selenomethionine incorporation into hemoglobin, Clin Res 12:228 (1964).Google Scholar
  42. 42.
    S. C. Srivastava and P. Richards, Technetium-labeled compounds, in: “Radiotracers for Medical Applications,” vol. I, G. V. S. Rayudu, ed., CRC Press, Boca Raton, FL (1983).Google Scholar
  43. 43.
    J. Fischer, R. Wolf, A. Leon, Technetium-99m as a label for erythrocytes, J Nucl Med 8:229 (1967).PubMedGoogle Scholar
  44. 44.
    U. Haubold, H. W. Pabst, G. Hor, Scintigraphy of the placenta with Tc-99m-labeled erythrocytes, in: “Symposium on Medical Radioisotope Scintigraphy,” vol. 2, Vienna, IAEA (1969).Google Scholar
  45. 45.
    M. B. Weinstein and W. M. Smoak, Technical difficulties in Tc-99m-labeling of erythrocytes, J Nucl Med 11:41 (1970).PubMedGoogle Scholar
  46. 46.
    R. Berger, B. Johanssen, Markierung von Erythrozyten mit Tc-99m, Math-Naturwiss 18:634 (1960).Google Scholar
  47. 47.
    J. P. Nouel and P. Brunelle, Le marquage des hematies par le Technetium-99m, Presse Med 78:73 (1970).PubMedGoogle Scholar
  48. 48.
    W. Eckelman, P. Richards, W. Hauser, et al, Technetium-labeled red blood cells, J Nucl Med 12:22 (1971).PubMedGoogle Scholar
  49. 49.
    K. D. Schwartz and M. Kruger, Improvement in labeling erythrocytes with Tc-99m-pertechnetate, J Nucl Med 12:323 (1971).PubMedGoogle Scholar
  50. 50.
    W. C. Eckelman, R. C. Reba, S. N. Albert, A rapid simple improved method for the preparation of Tc-99m red blood cells for the determination of red cell volume, Am J Roentgenol Radium Ther Nucl Med 118:861 (1973).PubMedGoogle Scholar
  51. 51.
    H. L. Atkins, W. C. Eckelman, J. F. Klopper, et al, Vascular imaging with Tc-99m red blood cells, Radiology 106:357 (1973).PubMedGoogle Scholar
  52. 52.
    T. D. Smith and P. Richards, A simple kit for the preparation of Tc-99m-labeled red blood cells, J Nucl Med 17:126 (1976).PubMedGoogle Scholar
  53. 53.
    D. G. Pavel, A. M. Zimmer, V. N. Patterson, In vivo labeling of red blood cells with Tc-99m: a new approach to blood pool visualization, J Nucl Med 18:305 (1977).PubMedGoogle Scholar
  54. 54.
    S. C. Srivastava, J. B. Babich, P. Richards, A new kit method for the selective labeling of erythrocytes in whole blood with Tc-99m, J Nucl Med 24:P128 (1983).Google Scholar
  55. 55.
    R. K. Narra and B. L. Kuczynski, Kit for in vitro labeling of red blood cells with Tc-99m, in: “Applications of Nuclear and Radiochemistry,” R. M. Lambrecht and N. Morcos, eds., Pergamon New York (1982).Google Scholar
  56. 56.
    J. McRae, R. M. Sugar, B. A. Shipley, et al, Alterations in tissue distribution of Tc-99m-pertechnetate in rats given stannous tin, J Nucl Med 15:151 (1974).PubMedGoogle Scholar
  57. 57.
    R. G. Hamilton and P. O. Alderson, A comparative evaluation of techniques for rapid and efficient in vivo labeling of red cells with Tc-99m, J Nucl Med 18:1010 (1977).PubMedGoogle Scholar
  58. 58.
    A. M. Zimmer, D. G. Pavel, S. M. Karesh, Technical parameters of in vivo red blood cell labeling with Tc-99m, Nucl Med 18:241 (1979).Google Scholar
  59. 59.
    M. W. Billinghurst, D. Jette, D. Greenberg, Determination of the optimal concentrations of stannous pyrophosphate for in vivo RBC labeling with Tc-99m, Int J Appl Radiat Isot 31:499 (1980).PubMedCrossRefGoogle Scholar
  60. 60.
    S. C. Srivastava, P. Richards, Y. Yonekura, et al, Long-term retention of tin following in vivo RBC labeling, J Nucl Med 23:P91 (1982).Google Scholar
  61. 61.
    G. G. Winzelberg, K. A. McKusick, J. W. Froelich, et al, Detection of gastrointestinal bleeding with Tc-99m-labeled red blood cells, Semin Nucl Med 12:139 (1979).CrossRefGoogle Scholar
  62. 62.
    R. Armas, M. L. Thakur, A. Gottschalk, A simple method of spleen imaging with Tc-99m-labeled erythrocytes, Radiology 132:215 (1979).PubMedGoogle Scholar
  63. 63.
    R. J. Callahan, J. W. Froelich, K. A. McKusick, et al, A modified method for the in vivo labeling of red blood cells with Tc-99m: concise communication, J Nucl Med 23:315 (1982).PubMedGoogle Scholar
  64. 64.
    S. C. Srivastava, R. Straub, P. Richards, Unpublished data, 1983.Google Scholar
  65. 65.
    M. K. Dewanjee, Binding of Tc-99m to hemoglobin, J Nucl Med 15:702 (1974).Google Scholar
  66. 66.
    M. K. Dewanjee and S. A. Rao, Mechanism of in vivo red cell labeling with Tc-99m-pertechnetate and role of Sn2+ pump at RBC membrane on the distribution of Sn2+ ion and Tc-99m, in: Nucl Med Biol Proceedings of Third World congress of Nuclear Medicine and Biology, Paris, 1982, C. Raynaud, ed., Pergamon, Paris (1982).Google Scholar
  67. 67.
    M. M. Rehani and S. K. Sharma, Site of Tc-99m binding to the red blood cell, J Nucl Med 21:676 (1980).PubMedGoogle Scholar
  68. 68.
    L. R. Chervu, J. J. Castronuovo, S. S. Huq, et al, Alterations in red cell tagging with sulfonamides, J Nucl Med 22:P70 (1981).Google Scholar
  69. 69.
    H. B. Lee. J. P. Wexler, S. C. Scharf, et al, Pharmacologic alterations in Tc-99m binding by rea Dlouu communication, J Nucl Med 24:397 (1983).PubMedGoogle Scholar
  70. 70.
    G. P. Leitl, H. M. Drew, M. E. Kelly, et al, Interference with Tc-99m labeling of red blood cells (RBCs) by RBC antibodies, J Nucl Med 21:P44 (1980).Google Scholar
  71. 71.
    G. Meinken, S. C. Srivastava, T. D. Smith, et al, Is there a “good” Tc-99m-albumin?, J Nucl Med 17:537 (1976).Google Scholar
  72. 72.
    J. A. Dahlstrom, S. Carlsson, B. Lilja, et al, Cardiac blood pool imaging - a clinical comparison between RBC labeled with Tc-99m in vivo and in vitro and Tc-99m-HSA, J Nucl Med 18:271 (1979).Google Scholar
  73. 73.
    H. L. Atkins, J. F. Klopper, A. N. Ansari, et al, A comparison of Tc-99m-labeled HSA and in vitro-labeled RBC for blood pool studies, Clin Nucl Med 5:166 (1980).PubMedCrossRefGoogle Scholar
  74. 74.
    H. L. Atkins, W. C. Eckelman, W. Hauser, et al, Splenic sequestration of Tc-99m-labeled red blood cells, J Nucl Med 13:811 (1972).PubMedGoogle Scholar
  75. 75.
    H. L. Atkins, A. G. Goldman, R. F. Fairchild, et al, Splenic sequestration of Tc-99m-labeled heat-treated RBC, Radiology 136:501 (1980).PubMedGoogle Scholar
  76. 76.
    H. Malamud, Dosimetry of Tc-99m-labeled blood pool scanning agents, Clin Nucl Med 3:420 (1978).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Suresh C. Srivastava
    • 1
  1. 1.Medical DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations