Indium-111 Labeled Cells: New Approaches and Radiation Dosimetry

  • D. A. Goodwin
  • C. F. Meares
Part of the NATO ASI Series book series (NSSA, volume 88)


A large number of mouse monoclonal antibodies (MoAbs) are now available* to human leukocyte cell surface antigens. An incomplete list includes MoAbs specific for T lymphocytes; B cell associated antigen; a 24,000 dalton surface structure present on bone marrow lymphohemopoietic precursors and lymphoid leukemic cells; antigens primarily expressed on cells of T lymphocyte and monocyte/macrophase lineage; and “pan-T” reagent detecting a 65,000 dalton antigen (T65) common to all normal and leukemic T lymphocytes. This list is being increased monthly by several innovative companies* concerned with the development of new monoclonal antibodies. Using bifunctional chelates it is now possible to label MoAbs with In-111 for in vivo imaging(1). The advantages and disadvantages of using MoAbs are listed in Table 1.


Gamma Camera Perturbed Angular Correlation Radiation Dosimetry Posterior View Bifunctional Chelate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. A. Goodwin, C. F. Meares, M. J. McCall, H. O. McDevitt, M. McTigue, C. I. Diamanti, Lymphoscintigraphy with In-111 labeled monoclonal antibodies, Clin Nucl Med 8P26m (Abstr) k1JO)J.Google Scholar
  2. 2.
    G. H. Rannie, M. L. Thakur, W. L. Ford, An experimental comparison of radioactive labels with potential application to lymphocyte migration studies in patients, Clin Exp Immunol 29:209 (1977).Google Scholar
  3. 3.
    P. Frost, R. Wiltrout, Z. Maciarowski, N. R. Rose, An isotope release cytotoxicity assay applicable to human tumors, Oncology 34:102 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    P. Frost, J. Smith, H. Frost, The radiolabeling of lymphocytes and tumor cells with Indium-111, Proc Soc Exp Biol Med 157:61 (1978).PubMedGoogle Scholar
  5. 5.
    P. M. Chisholm, J. Danpure, G. Healey, Cell damage resulting from the labeling of rat lymphocytes and HeLa S3 cells with In-111 oxine, J Nucl Med 20:1308 (1979).PubMedGoogle Scholar
  6. 6.
    G. Kraal, A. A. Geldof, Radiotoxicity of Indium-111, J Immunol Methods 31:193 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    T. Tssekutz, W. Chin, J. B. Hay, Measurement of lymphocyte traffic with Indium-111, Clin Exp Immunol 39:215 (1980).Google Scholar
  8. 8.
    S. M. Sparshott, H. Sharma, J. D. Kelley, W. L. Ford, Factors influencing the fate of Indium-111-labeled lymphocytes after transfer to syngencic rats, J Immunol Methods 41:303 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    A. C. H. M. Van Dinther-Janssen, R. J. Scheper, Restriction to the use of Indium-111 oxine as a radiolabel in lymphocyte migration studies, J Immunol Methods 46:353 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    A. I. Kassis, S. J. Adelstein, C. Haydock, Uptake and radiotoxicity of Rb-77 bromodeoxyuridine in mammalian cells, J Nucl Med 22:P44 (Abstr) (1981).Google Scholar
  11. 11.
    D. A. Goodwin, J. R. Heckman, L. F. Fajardo, A. Calin, S. J. Propst, C. I. Diamanti, Kinetics and migration of Indium-111 labeled human lymphocytes, in: “Proceedings of the International Symposium on Medical Radionuclide Imaging, International Atomic Energy Agency,” SM-247/95, Vienna, pp. 437–497 (1981).Google Scholar
  12. 12.
    H. H. Davis II, R. M. Senior, G. L. Griffin, C. Kuhn III; Indium-111-labeled human alveolar macrophages and monocytes: function and ultrastructure, J Immunol Methods 36:99 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    D. J. Silvester; Consequence of Indium-111 decay in vivo: calculated absorbed radiation dose to cells labeled by indium-111 oxine; J Labeled Compds and Radiopharma 16:193 (1979).Google Scholar
  14. 14.
    D. A. Bassano, J. G. McAfee; Cellular radiation doses of labeled neutrophils and platelets, J Nucl Med 20:255 (1979).Google Scholar
  15. 15.
    C. F. Meares, M. W. Sundberg, J. B. Baldeschwieler, Perturbed angular correlation study of a haptenic molecule, in: “Proceedings of the National Academy of Sciences USA,” 69:3718 (1972).CrossRefGoogle Scholar
  16. 16.
    D. A. Goodwin, R. Goode, L. Brown, C. J. Imbornone, In-111 labeled transferrin for the detection of tumors, Radiology 100:175 (1971).PubMedGoogle Scholar
  17. 17.
    D. A. Goodwin, D. Menzimer, R. DelCastilho, A dual-spectrometer system for high efficiency imaging of multi gamma emitting nuclides with the auger gamma camera, J Nucl Med 11:221 (1970).PubMedGoogle Scholar
  18. 18.
    D. A. Goodwin, C. H. Song, C. F. Meares, The study of Indium-111 labeled compounds in mice using perturbed angular correlations of gamma radiation, Radiology 105:699 (1972).PubMedGoogle Scholar
  19. 19.
    M. W. Sundberg, C. F. Mears, D. A. Goodwin, C. I. Diamanti, Selective binding of metal ions to macromolecules using bifunctional analogs of EDTA, J Med Chem 17:1304 (1974).PubMedCrossRefGoogle Scholar
  20. 20.
    M. W. Sundberg, C. F. Meares, D. A. Goodwin, C. I. Diamanti, Chelating agents for the binding of metal ions to macromolecules, Nature 250:587 (1974).PubMedCrossRefGoogle Scholar
  21. 21.
    D. A. Goodwin, C. F. Meares, C. I. Diamanti, M. W. Sundberg, Bifunctional chelates for radiopharmaceutical labeling, Nuclear Medizin XIV: 365 (1975).Google Scholar
  22. 22.
    C. S-H Leung, C. F. Meares, D. A. Goodwin, The Attachment of metal-chelating groups to proteins: Tagging of albumin by diazonium coupling and use of the products as radiopharmaceuticals, Intl J Appl Radiat Isot 29:687 (1978).Google Scholar
  23. 23.
    S. M. Yeh, C. F. Meares, D. A. Goodwin, Decomposition rates of radiopharmaceutical indium chelates in serum, J Radioanalytical Chem 53:327 (1979).CrossRefGoogle Scholar
  24. 24.
    D. A. Goodwin and C. F. Meares, Bifunctional chelates for radiopharmaceutical labeling, in; “Radiopharmaceuticals: Structure-Activity Relationships,” R. P. Spencer, ed., Grune & Stratton, New York (1981).Google Scholar
  25. 25.
    L. DeRiemer, C. F. Meares, D. A. Goodwin, C. I. Diamanti, BLEDTA: Tumor localization by a bleomycin analog containing a meta-chelating group J Med Chem 22:1019 (1979).PubMedCrossRefGoogle Scholar
  26. 26.
    S. M. Yeh, D. G. Sherman, C. F. Meares, A new route to “bifunctional” chelating agents: conversion of amino acids to analogs of ethylenedinitrilotetraacetic acid, Anal Biochem 100:152 (1979).PubMedCrossRefGoogle Scholar
  27. 27.
    D. A. Goodwin, C. F. Meares, C. I. Diamanti, J. J. McCall, C. D. Lai, F. M. Torti, B. C. Martin, Use of specific antibody for rapid clearance of circulating blood background from radiolabeled tumor imaging proteins, J Nucl Med 24:P31 (abstr) (1983).Google Scholar
  28. 28.
    D. A. Goodwin, C. F. Mears, C. I. Diamanti, M. J. McCall, H. H. Sussman, C. D. Lai, C. H. Song, Indium-111 chelate conjugates of transferrin for tumor imaging, J Nucl Med 24:P32 (abstr) (1983).Google Scholar
  29. 29.
    S. E. Halpern, P. L. Stern, P. L. Hagen, A. Chen, S. G. David, W. J. Desmond, T. H. Adams, R. M. Bartholomew, J. M. Frincke, C. E. Brautigam, Radiolabeling of monoclonal antitumor antibodies. Comparison of I-125 and In-111 anti CEA with Ga-67 in a nude mouse-human tumor model, Clin Nucl Med 6:453 (abstr) (1981).Google Scholar
  30. 30.
    D. A. Scheinberg and M. Strand, Leukemic cell targeting and therapy by monoclonal antibody in a mouse model system, Cancer Res 42:44 (1982).PubMedGoogle Scholar
  31. 31.
    Davis, T. W. Griffin, P. W. Doherty, Radioactive labeling of antibody: a simple and efficient method, Science 220:613 (1983).PubMedCrossRefGoogle Scholar
  32. 32.
    L. L. Houston, R. C. Nowinski, I. D. Berstein, Specific in vivo localization of monoclonal antibodies directed against the Thy 1.1 antigen, J Immunol 125:837 (1980).PubMedGoogle Scholar
  33. 33.
    J. N. Weinstein, R. J. Parker, A. M. Keenan, S. K. Dower, H. C. Morse, S. M. Sieber, Monoclonal antibodies in the lymphatics: toward the diagnosis and therapy of tumor metastases, Science 218:1334 (1982).PubMedCrossRefGoogle Scholar
  34. 34.
    Y-H. Chin, G. D. Carey, J. J. Woodruff, Lymphocyte recognition of lymph node high endothelium IV. Cell surface structures mediating entry into lymph nodes, J Immunol 129:1911 (1982).PubMedGoogle Scholar
  35. 35.
    W. M. Gallatin, I. L. Weissman, E. C. Butcher, A cell surface molecule involved in organ specific homing of lymphocytes Nature 303:30–34 (1983).CrossRefGoogle Scholar
  36. 36.
    F. H. DeLand, E. E. Kim, G. Simons, D. M. Goldenberg, Imaging approach in radioimmunodetection, Cancer Res 40:3046 (1980).PubMedGoogle Scholar
  37. 37.
    D. A. Goodwin, C. F. Meares, L. H. DeRiemer, C. I. Diamanti, G. L. Goode, J. E. Gaumert, D. J. Sartoris, R. L. Lantieri, H. D. Fawcett, Clinical studies with indium-111 BLEDTA, a tumor imaging conjugate of bleomycin with a bifunctiona chelating agent, J Nucl Med 22:787 (1981).PubMedGoogle Scholar
  38. 38.
    D. A. Scheinberg, M. Strand, O. A. Gansow, Tumor imaging with radioactive metal chelates conjugated to monoclonal antibodies, Science 215:511 (1982).Google Scholar
  39. 39.
    D. A. Goodwin, C. F. Meares, C. I. Diamanti, M. McCall, C. D. Lai, F. M. Torti, M. McTigue, B. C. Martin, Use of specific antibody for rapid clearance of circulating bold background from radiolabeled tumor imaging protein, Eur J Nucl Med 9:209–215 (1984).PubMedCrossRefGoogle Scholar
  40. 40.
    J. G. McAfee and M. L. Thakur, Survey of radioactive agents for in vivo labeling of phagocytic leukocytes. I. Soluble agents, J Nucl Med 17:480 (1976).PubMedGoogle Scholar
  41. 41.
    M. L. Thakur, T. P. Lavender, R. M. Arnot, Indium-111 labeled autologous leukocytes in man, J Nucl Med 18:1012 (1977).Google Scholar
  42. 42.
    D. A. Goodwin, P. W. Doherty, I. R. McDougall, Clinical use of indium-111 labeled white cells - an analysis of 312 cases, in: “Indium-111 labeled Neutrophils, Platelets, and Lymphocytes, Proceedings of the Yale Symposium: Radiolabeled Cellular Blood Elements,” M. L. Thakur and A. Gottschalk eds., Trivirum Publishing Company, New York (1981).Google Scholar
  43. 43.
    I. R. McDougall, J. E. Baumert, R. L. Lantieri, Evaluation of In-111 leukocyte whole body scanning, Am J Radiology 133:849, (1979).Google Scholar
  44. 44.
    L. Forstrom, D. R. Hoagland, L. Gomez, Indium-111 oxine labeled leukocytes in the diagnosis of occult inflammation or abscess, J Nucl Med 20:659 (1979).Google Scholar
  45. 45.
    D. A. Goodwin, J. T. Bushberg, P. W. Doherty, In-111 labeled autologous platelets for localization of vascular thrombi in humans, J Nucl Med 19:626 (1978).PubMedGoogle Scholar
  46. 46.
    J. P. Lavender, J. M. Goldman, R. N. Arnot, M. L. Thakur, Kinetics of indium-111 labeled lymphocytes in normal subjects and patients with Hodgkin’s disease, Br Med J 2:797 (1977).PubMedCrossRefGoogle Scholar
  47. 47.
    D. A. Goodwin, J. R. Heckman, L. F. Fajardo, A. Calin, S. L. Propst, C. I. Diamanti, Kinetics and migration of indium-111 labeled human lymphocytes, Br J Radiology 53:930 (1980).Google Scholar
  48. 48.
    J. M. Thomas and L. L. Eberhardt, Can results from animal studies be used to estimate dose or lower dose effects in humans? in: “Proceedings of the Third International Radiopharmaceutical Dosimetry Symposium,” Oak Ridge, Tennessee, October 1980, pp. 259–282.Google Scholar
  49. 49.
    J. G. McAfee and G. Subramanian, Interpretation of interspecies differences in the biodistribution of radioactive agents, in: “Proceedings of the Third International Radiopharmaceutical Dosimetry Symposium, Oak Ridge, Tennessee, October 1980, pp. 292–306.Google Scholar
  50. 50.
    W. S. Snyder, M. R. Ford, G. G. Warner, S. B. Watson, “S” absorbed dose per unit cumulated activity for selected radionuclides and organs, in: “MIRD pamphlet, ”New York Society of Nuclear Medicine, (1975).Google Scholar
  51. 51.
    P. A. du Heyns, M. G. Lotter, P. N. Badenhorst, Kinetics, distribution and sites of destruction of In-111 indium-labeled human platelets, Br J Haematol 44:269 (1980).PubMedCrossRefGoogle Scholar
  52. 52.
    D. A. Goodwin, M. W. Sundberg, C. I. Diamanti, C. F. Meares, In-111 labeled radiopharmaceuticals and their clinical use, in: “Radiopharmaceuticals,” Subramanian, Rhodes, Cooper, and Sodd, eds., Society of Nuclear Medicine, New York (1975).Google Scholar
  53. 53.
    D. Sartoris, D. A. Goodwin, C. F. Meares, L. H. DeRiemer, Pharmacodynamics of In-111 BLEDTA in man, Invest Radiol 19:221–227 (1984).PubMedGoogle Scholar
  54. 54.
    P. A. du Heyns, M. G. Lötter, H. F. Kotzé, H. Pieters, P. Wessels, U. Scheffel, R. Hill-Zobel, M. F. Tsan, Quantification of in vivo distribution of platelets labeled with indium-111 oxine, J Nucl Med 23:943 (1982).PubMedGoogle Scholar
  55. 55.
    R. E. Johnston, Quantitative measurement of radioactivity in vivo in: “The Physics of Clinical Nuclear Medicine,” AAPM Annual Summer School, Lexington (1977).Google Scholar
  56. 56.
    E. D. Williams, H. I. Glass, R. N. Arnot, A. C. DeGarete, A dual detector scanner for quantitative uptake and organ volume studies, Medical Radioisotope Scintigraphy 1:665, IAEA, Vienna (1969).Google Scholar
  57. 57.
    N. Arimizu and A. C. Morris, Quantitative measurement of radioactivity in internal organs by area scanning, J Nucl Med 10:265 (1969).PubMedGoogle Scholar
  58. 58.
    J. S. Fleming, A technique for the absolute measurement of activity using a gamma camera and computer, Phys Med Biol 24:176 (1979).PubMedCrossRefGoogle Scholar
  59. 59.
    L. S. Graham and R. Neil, In vivo quantitation of radioactivity using the Auger camera, Radiology 112:441 (1974).PubMedGoogle Scholar
  60. 60.
    D. D. Williams, H. I. Glass, A. W. G. Golden, S. Satyavanich, Comparison of two methods or measuring the thyroidal uptake of Tc-99m, J Nucl Med 12:159 (1972).Google Scholar
  61. 61.
    B. R. Line, A. E. Jones, R. G. Crystal, G. S. Johnston, J. J. Bailey, An algorithm for the selection of lung margins in scintigraphic ventilation-perfusion studies in: “Proceedings of the Sixth Symposium on Sharing of Computer Programs and Technology in Nuclear Medicine,” Atlanta GA, 1976, Society of Nuclear Medicine, New York.Google Scholar
  62. 62.
    O. W. Schalm, N. C. Jain, E. J. Carroll, “Veterinary Hematology,” Chapters 8 and 10, Lea Febiger Philadelphia (1975).Google Scholar
  63. 63.
    L. E. Williams, L. A. Forstrum, B. J. Weiblen, “Proceedings of Mayo Symposium on In-111 Labeled Platelets and Leukocytes,” 173–188 (1981).Google Scholar
  64. 64.
    O. R. van Reenen, M. G. Lötter, P. C. Minnaar, et al, Radiation dose from human platelets labeled with indium-111, Br J Radiol 53:790 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • D. A. Goodwin
    • 1
    • 2
  • C. F. Meares
    • 3
  1. 1.Veterans Administration Medical CenterPalo AltoUSA
  2. 2.Stanford University School of MedicineStanfordUSA
  3. 3.Department of ChemistryUniversity of CaliforniaDavisUSA

Personalised recommendations