Present Trends and Future Directions in “Leukocyte Labeling”

  • John G. McAfee
  • Gopal Subramanian
  • George Gagne
Part of the NATO ASI Series book series (NSSA, volume 88)


Imaging with In-111-labeled leukocytes has become an established clinical method for the detection of focal inflammatory lesions in many medical centers but has been rejected by others because of the technical complexities of the labeling procedure. Gaining knowledge of the in vivo migratory pattern of the different leukocyte populations and subtypes in health and disease remains an important goal(1), particularly in the field of immunology. Techniques for examining the in vivo distribution of lymphocytes, monocytes and the eosinophils are still under development, and differences in migratory patterns of mononuclear subtypes remain to be explored. This paper attempts to summarize recent progress in the techniques of harvesting and labeling leukocytes and suggests possible directions for future research.


Cell Separation Chemotactic Factor Hydroxyethyl Starch Label Yield Immunol Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. G. McAfee, Importance of cell labeling techniques: Indium111-labeled neutrophils, platelets and lymphocytes, in: “Proceedings of the Yale symposium,” M. L. Thakur and A. Gottschalk, eds., Trivirum, New York (1980).Google Scholar
  2. 2.
    A. Boyum, Separation of blood leucocytes, granulocytes and lymphocytes, Tissue Antigens 4: 269 (1974).PubMedCrossRefGoogle Scholar
  3. 3.
    A. J. Roy, A. Franklin, W. B. Simmons, et al, A method for separation of granulocytes from normal human blood using hydroxyethyl starch, Prep Biochem 1: 197 (1971).PubMedCrossRefGoogle Scholar
  4. 4.
    D. C. Dooley, T. Takahashi, The effect of osmotic stress on the function of the human granulocyte, Exp Hematol 9: 731 (1981).PubMedGoogle Scholar
  5. 5.
    M. L. Thakur, J. P. Lavender, R. N. Arnot, et al, Indium-11llabeled autologous leukocytes in man, J Nucl Med 18: 1012 (1977).Google Scholar
  6. 6.
    P. Madyastja, K. R. Madyastha, T. Wade, et al, An improved method for rapid layering of Ficoll-Hypaque double density gradients suitable for granulocyte separation, J Immunol Methods 48: 281 (1982).CrossRefGoogle Scholar
  7. 7.
    A. Boyum, Isolation of mononuclear cells and granulocytes from human blood, Scand J Clin Lab Invest 21: (Suppl. 97) 1 (1968).Google Scholar
  8. 8.
    A. Ferrante, Y. H. Thong, Optimal conditions for simultaneous purification of mononuclear and polymorphonuclear leukocytes from human blood by the Hypaque-Ficoll method, J Immunol Methods 36: 109 (1980).PubMedCrossRefGoogle Scholar
  9. 9.
    M. T. Aguado, N. Pujol, E. Rubiol, et al, Separation of granulocytes from peripheral blood in a single step using discontinuous density grandients of Ficoll-Urografin: a comparative study with separation by dextran, J Immunol Methods 32: 41 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    H. Loos, B. Blok-Schut, R. Van Doorn, et al, A method for the recognition and separation of human blood monocytes on density gradients, Blood 48: 731 (1976).PubMedGoogle Scholar
  11. 11.
    H. Pertoft, A. Johnson, B. Warmegard, et al, Separation of human monocytes on density gradients of Percoll, J Immunol Methods 33: 221 (1980).PubMedGoogle Scholar
  12. 12.
    F. Gmelig-Meyling, T. A. Waldmann, Separation of human blood monocytes and lymphocytes on a continuous Percoll gradient, J Immunol Methods 33: 1 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    A. J. Ulmer, H-D Flad, Discontinuous density gradient separation of human mononuclear leucocytes using Percoll as gradient medium, J Immunol Methods, 30: 1 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    D. C. Dooley, J. F. Simpson, H. T. Merryman, Isolation of large numbers of fully viable human neutroqhils: a preparative technique using Percoll density gradient centrifugation, Exp Hematol 10: 591 (1982).PubMedGoogle Scholar
  15. 15.
    T. Timonen, C. W. Reynolds, J. R. Ortaldo, Isolation of human and rat natural killer cells, J Immunol Methods, 51: 269 (1982).PubMedCrossRefGoogle Scholar
  16. 16.
    D. G. Fischer, H. S. Koren, Isolation of human monocytes in Methods for studying mononuclear phagocytes, Adams DO, Edelson PJ and Kosen HS, Editors Academic Press, New York (1981).Google Scholar
  17. 17.
    F. J. Lionetti, S. M. Hunt, R. Valeri, Isolation of human blood phagocytes by counter flow centrifugation elutriation, in: “Methods of Cell Separation,” vol. 3, N. Catsimpoolas, ed., Plenum Press, New York (1980).Google Scholar
  18. 18.
    J. F. Jemionek, T. J. Contreras, J. E. French, et al, Technique for increased granulocyte recovery from human whole blood by counterflow centrifugation-elutriation. I. In vivo analysis, Transfusion 19:120 (1979).Google Scholar
  19. 19.
    J. F. Jemionek, T. J. Contreras, D. N. Stevens, et al, Use of a modified rotor and enlarged separation chamber for isolation of human granulocytes by counterflow centrifugation-elutriation, Cryobiology 17: 230 (1980).PubMedCrossRefGoogle Scholar
  20. 20.
    J. G. McAfee, G. M. Gagne, G. Subramanian, et al, Distribution of leukocytes labeled with In-111 oxine in dogs with acute inflammatory lesions, J Nucl Med 21: 1059 (1980).PubMedGoogle Scholar
  21. 21.
    R. J. Sanderson and K. E. Bird, Cell separation by counter flow centrifugation, in: “Methods in Cell Biology”, vol. 15, D. M. Prescott, ed., Academic Press, New York (1977).Google Scholar
  22. 22.
    R. J. Sanderson, F. T. Shepperdson, A. E. Vatter, et al, Isolation and enumeration of peripheral blood monocytes, J Immunol 118: 1409 (1977).PubMedGoogle Scholar
  23. 23.
    D. A. Norris, R. M. Morris, R. J. Sanderson, et al, Isolation of functional subsets of human peripheral blood monocytes, J Immunol 123: 166 (1979).PubMedGoogle Scholar
  24. 24.
    T. G. Pretlow II, T. P. Pretlow Centrifugal elutriation (counterstreaming centrifugation) of cells, Cell Biophys 1: 195 (1979).PubMedCrossRefGoogle Scholar
  25. 25.
    C. L. Berger, R. L. Edelson, Comparison of lymphocyte function after isolation by Ficoll-Hypaque flotation or elutriation, J Invest Dermatol 73: 231 (1979).PubMedCrossRefGoogle Scholar
  26. 26.
    L. A. Herzenberg and L. A. Herzenberg, Analysis and separation using the fluorescence activated cell sorter. (FACS), in: “Handbook of Experimental Immunology,” vol. 2, Cellular Immunology, 3rd edition, D. M. Weir, ed., Blackwell, Oxford (1978).Google Scholar
  27. 27.
    M. R. Loken and A. M. Stall, Flow cytometry as an analytical and preparative tool in immunology, J Immunol Methods 5O: R85 (1982).CrossRefGoogle Scholar
  28. 28.
    M. L. Thakur and M. J. Barry, Preparation and evaluation of a new In-111 agent for efficient labeling of human platelets in plasma (Abstr.), Fourth International Symposium on Radiopharmaceutical Chemistry, August 23–27, 1982, Kernforschungsanlage Julich GmbH (1982).Google Scholar
  29. 29.
    J. G. McAfee and M. L. Thakur, Survey of radioactive agents for in vitro labeling of phagocytic leukocytes. I. Soluble agents, J Nucl Med 17: 480 (1976).PubMedGoogle Scholar
  30. 30.
    R. H. Wiltrout, E. Gorelik, M. J. Brunda, et al, Assessment of in vivo natural antitumor resistance and lymphocyte migration in mice: comparison of I-125-iododeoxyuridine with Indium-111-oxine and Chromium-51 as cell labels, Cancer Immunol Immunother 14: 172 (1983).PubMedCrossRefGoogle Scholar
  31. 31.
    M. L. Thakur, Cell labeling: achievements, challenges and prospects, J Nucl Med 22: 1011 (1981).PubMedGoogle Scholar
  32. 32.
    J. G. McAfee, Techniques of harvesting platelets and neutrophils and labeling with In-111 oxine, in: “Proceedings of the Yale Symposium,” M. L. Thakur and A. Gottschalk, eds,. Trivirum, New York (1980).Google Scholar
  33. 33.
    M. Lichtman, P. A. Santillo, E. A. Kearney, et al, The shape and surface morphology of human leukocytes: the in vitro effect of temperature, metabolic inhibitions and agents that influence membrane structure, Blood Cells 2: 507 (1976).Google Scholar
  34. 34.
    W. T. H. Goedemens, Simplified cell labeling with In-111 acetylacetonate and In-111 oxinate, Br J Rad 54: 636 (1981).CrossRefGoogle Scholar
  35. 35.
    D. Ducassou, J. P. Nouel, A. Brendel, Le marquages des elements figures du sang par l’indium radioactif-methodology-resultatsindications, Rad Isot in Klinik und Forschung 13: 91 (1978).Google Scholar
  36. 36.
    M. Chvapil, L. Stankova, C. Zukoski, et al, Inhibition of some functions of polymorphonuclear leukocytes by in vitro zinc J Lab Clin Med 89: 135 (1977).Google Scholar
  37. 37.
    M. R. Hardeman, Tropolone, the favourite ligand for cell labeling? (letter to the editor), Eur J Nucl Med 7: 528 (1982).PubMedCrossRefGoogle Scholar
  38. 38.
    J. E. T. Burke, S. Roath, D. Ackery, P. Wyeth, The comparison of 8-hydroxyquinoline, tropolone, and acetylacetone as mediators in the labelling of polymorphonuclear leukocytes with In-111: a functional study, Eur J Nucl Med 7: 73 (1982).PubMedCrossRefGoogle Scholar
  39. 39.
    H. J. Danpure, S. Osman, F. Brady, The labeling of blood cells in plasma with In-111-tropolonate, Brit J Radiol 55: 247 (1982).PubMedCrossRefGoogle Scholar
  40. 40.
    A. M. Peters, S. Saverymuttu, H. J. Reavy, et al, Imaging of inflammation with In-111 tropolonate labeled leukocytes, J Nucl Med 24: 39 (1983).PubMedGoogle Scholar
  41. 41.
    B. J. Weiblen, L. Forstrum, J. McCullough, Studies of the kinetics of In-111-labeled granulocytes J Lab Clin Med 94: 246 (1979).Google Scholar
  42. 42.
    D. J. Silvester, Consequences of In-111 decay in vivo: calculated absorbed radiation dose to cells labeled by In-111 oxine, J Label Comp Radiopharm 16: 193 (1979).Google Scholar
  43. 43.
    D. A. Bassano and J. G. McAfee, Cellular radiation doses of labeled neutrophils and platelets, J Nucl Med 20: 255 (1979).Google Scholar
  44. 44.
    T. R. Holley, D. E. Van Epps, R. L. Harvey, et al, Effect of high doses of radiation on human neutrophil chemotaxis, phagocytosis and morphology, Am J Path 75: 61 (1974).PubMedGoogle Scholar
  45. 45.
    L. N. Button, W. C. DeWolf, P. E. Newburger, et al, The effects of irradiation on blood components, Transfusion 21: 419 (1981).PubMedCrossRefGoogle Scholar
  46. 46.
    S. M. Sparshott, H. Sharma, J. D. Kelly, et al, Factors influencing the fate of In-111-labelled lymphocytes after transfer to syngeneic rats, J Immunol Methods, 41: 303 (1981).PubMedCrossRefGoogle Scholar
  47. 47.
    T. Uchida, T. Nemoto, T. Yui, et al, Use of Technetium-99m as a radioactive label to study migratory patterns of leukocytes, J Nucl Med 20: 1197 (1979).PubMedGoogle Scholar
  48. 48.
    N. Linhart-Colas, M. Meignan, B. Bok, et al, “In vivo” kinetics of Technetium-99m-labeled leukocytes in dogs and the effects of an abscess Biomedicine 32: 133 (1980).Google Scholar
  49. 49.
    N. Colas-Linhart, M. Barbu, M. A. Gougerot, et al, Five leukocyte-labeling techniques: a comparative in-vitro study, Br J Haematol 53: 31 (1983).PubMedCrossRefGoogle Scholar
  50. 50.
    G. Subramanian, J. G. McAfee, G. M. Gagne, R. W. Henderson, M. Rosenstreich, Tc-99m-oxine: a new lipophilic radiopharmaceutical for labeling leukocytes and platelets, in: Nuklearmedizin 15th International Annual Meeting of Society of Nuclear Medicine, Gronigen, Sept. 13–16, 1977, H. A. E. Schmidt and M. F. K. Woldring, eds., Schattauer Verlag, Stuttgart-New York, 1978.Google Scholar
  51. 51.
    A. G. Jones, A. Davison, M. J. Abrams, et al, A new class of water soluble low valent technetium unipositive cations, (abstr.), Fourth International Symposium on Radiopharmaceutical Chemistry, August 23–27, 1982, Kernforschungsanlag Julich GmbH (1982).Google Scholar
  52. 52.
    J. G. McAfee and M. L. Thakur, Survey of radioactive agents for in vitro labeling of phagocytic leukocytes. II. Particles, J Nucl Med 17: 488 (1976).Google Scholar
  53. 53.
    J. Roberts and J. H. Quastel, Particle uptake by polymorphonuclear leukocytes and Ehrlich ascites-carcinoma cells, Biochem J 89: 150 (1963).PubMedGoogle Scholar
  54. 54.
    D. K. English and B. R. Andersen, Labeling of phagocytes from human blood with Tc-99m-sulphur colloid, J Nucl Med 16: 5 (1975).PubMedGoogle Scholar
  55. 55.
    H. J. Schroth, E. Oberhausen, R. Berberich, Cell labeling with colloidal substances in whole blood, Eur J Nucl Med 6: 469 (1981).PubMedCrossRefGoogle Scholar
  56. 56.
    J. J. Marchalonis, R. E. Cone, V. Santer, Enzymatic iodination: a probe for accessible surface proteins of normal and neoplastic lymphocytes, Biochem J 124: 921 (1971).PubMedGoogle Scholar
  57. 57.
    J. N. George, P. C. Lewis, D. A. Sears, Studies on platelet plasma membranes. H. Characterization of surface proteins of rabbit platelets in vitro and during circulation in vivo using diazotized (I-125)-diiodosulfanilic acid as a labelJ Lab Clin Med 88: 247 (1976).PubMedGoogle Scholar
  58. 58.
    A. E. Bolton, W. M. Hunter, The labeling of proteins to high specific radioactivities by conjugation to a I-125-containing acylating agent, Biochem J 133: 529 (1973).PubMedGoogle Scholar
  59. 59.
    R. M. Bennett, J. Davis, Lactoferrin binding to human peripheral blood cells: an interaction with a B-enriched population of lymphocytes and a subpopulation of adherent mononuclear cells, J Immunol 127: 1211 (1981).PubMedGoogle Scholar
  60. 60.
    H. J. Showell, R. J. Freer, S. H. Zigmond, et al, The structure-activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal enzymes secretion for neutrophils, J Exp Med 143: 1154 (1976).PubMedCrossRefGoogle Scholar
  61. 61.
    S. S. Zoghbi, M. L. Thakur, A. Gottschalk, et al, A potential radioactive agent for the selective labeling of human neutrophils, (To be published).Google Scholar
  62. 62.
    J. T. O’Flaherty, H. J. Showell, P. A. Ward, Neutropenia induced by systemic infusion of chemotactic factors, J Immunol 118: 1586 (1977).PubMedGoogle Scholar
  63. 63.
    R. J. Freer, A. R. Day, N. Muthukumaraswamy, et al, Antagonists of the formylated peptide chemoattractants: structureactivity comparison with formyl-methionyl-leucyl-phenylalamine-OH in: “ Biochemistry of the Acute Allergic Reactions,” Alan R. Liss, NY, (1981).Google Scholar
  64. 64.
    J. T. O’Flaherty, H.“J. Showell, D. L. Kreutzer, et al, Inhibition of in vivo and in vitro neutrophil responses to chemotactic factors by a competitive antagonist, J Immunol 120: 1326 (1978).PubMedGoogle Scholar
  65. 65.
    J. Niedel, S. Wilkinson, P. Cuatrecasas, Receptor-mediated uptake and degradation of I-125-chemotactic peptide by human neutrophils, J Biol Chem 254: 10700 (1979).PubMedGoogle Scholar
  66. 66.
    B. F. Haynes, Human T-lymphocyte antigens as defined by monoclonal antibodies, Immunol Rev 57: 127 (1981).PubMedCrossRefGoogle Scholar
  67. 67.
    M. Kamoun, J. Martin, J. A. Hansen, et al, Identification of a human T-lymphocyte surface protein associated with the E-rosette receptor, J Exp Med 153: 207 (1981).PubMedCrossRefGoogle Scholar
  68. 68.
    E. L. Reinherz, P. C. Kung, G. Goldstein, et al, Further characterization of the human inducer T-cell subset defined by monoclonal antibody, J Immunol 123: 2894 (1979).PubMedGoogle Scholar
  69. 69.
    A. Dimitriu-Bona, G. R. Burmester, S. J. Waters, et al, Human mononuclear phagocyte differentiation antigens. I. Patterns of antigenic expression on the surface of human monocytes and macrophages defined by monoclonal antibodies, J Immunol 130: 145 (1983).PubMedGoogle Scholar
  70. 70.
    V. Ugolini, G. Nunez, R. G. Smith, et al, Initial characterization of monoclonal antibodies against human monocytes, Proc Natl Acad Sci, USA, 77: 6764 (1980).PubMedCrossRefGoogle Scholar
  71. 71.
    H. Zola, P. McNamara, M. Thomas, et al, The preparation and properties of monoclonal antibodies against human granulocyte membrane antigens, Br J Haemat 48: 481 (1981).CrossRefGoogle Scholar
  72. 72.
    W. Knapp, Monoclonal antibodies against differentiation antigens of myelopoiesis, Blut 45: 301 (1982).PubMedCrossRefGoogle Scholar
  73. 73.
    I. D. Bernstein, R. G. Andrews, S. F. Colen, et al, Normal and malignant human myelocytic and monocytic cells identified by monoclonal antibodies, J Immunol 128: 876 (1982).PubMedGoogle Scholar
  74. 74.
    J. R. Ortaldo, S. O. Sarrow, T. Timonen, et al, Determination of surface antigens in highly purified human NK cells by flow cytometry with monoclonal antibodies, J Immunol 127: 2401 (1981).PubMedGoogle Scholar
  75. 75.
    T. Abo and C. M. Balch, A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1), J Immunol 127: 1024 (1981).PubMedGoogle Scholar
  76. 76.
    S. Hirsch and S. Gordon, The use and limitations of monoclonal antibodies against mononuclear phagocytes, Immunobiology 161: 298 (1982).PubMedCrossRefGoogle Scholar
  77. 77.
    D. W. Mason and A. F. Williams, The kinetics of antibody binding to membrane antigens in solution and at the cell surface, Biochem J 187: 1 (1980).PubMedGoogle Scholar
  78. 78.
    W. C. Eckelman, S. M. Karesh, R. C. Reba, New compounds; fatty acid and long chain hydrocarbon derivatives containing a strong chelating agent, J Pharm Sci 64: 704 (1975).PubMedCrossRefGoogle Scholar
  79. 79.
    D. J. Hnatowich, W. W. Layne, R. L. Childs, et al, Radioactive labeling of antibody: a simple and efficient method, Science 220: 613 (1983).PubMedCrossRefGoogle Scholar
  80. 80.
    C. F. Meares, L. H. DeRiemer, CS-H Leung, et al, Properties in vivo of chelate-tagged proteins and polypeptides, in: Modification of Proteins: Food, Nutritional and Pharmacological Aspects, R. E. Feeney and J. R. Whitaker, eds., Advances in Chemistry Series 198, American Chemical Society, Washington, D.C. (1982).Google Scholar
  81. 81.
    M. S. Brown, R. G. W. Anderson, J. L. Goldstein, Recycling receptors: the round-trip itinerary of migrant membrane proteins, Cell 32: 663 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • John G. McAfee
    • 1
  • Gopal Subramanian
    • 1
  • George Gagne
    • 1
  1. 1.Divisions of Radiological Sciences and Nuclear Medicine Department of RadiologyUpstate Medical Center, S.U.N.Y.SyracuseUSA

Personalised recommendations