Towards Reference Standards for the Thermal Conductivity of Liquids

  • C. A. Nieto de Castro
  • W. A. Wakeham


In view of the common need to calibrate instruments for the measurement of liquid-phase thermal conductivities, standard reference values for this property are urgently required. However, the difficulties associated with the measurement of the thermal conductivity of liquids mean that there is no consensus among workers in the field regarding either the most suitable liquids or the reference values to be adopted despite several independent recommendations. In this paper we consider developments in the measurement of thermal conductivity in the last decade which have produced results with an uncertainty almost an order of magnitude lower than hitherto. These new results are used to assess the situation with regard to standard reference materials and to formulate suggestions for future experimental and theoretical work to establish suitable reference values.


Thermal Conductivity Heat Mass Transfer Standard Reference Material Wire Radius Transient Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maitland, G.C., Rigby, Smith, M., Smith, E.B., Wakeham, W.A., “Intermolecular Forces — Their Origin and Determination”, Clarendon Press, Oxford (1981).Google Scholar
  2. 2.
    Riedel, L., Chem. Ing. Tech., 23, 321 (1951).CrossRefGoogle Scholar
  3. 3.
    Jamieson, D.T., Irving, J.B., Tudhope, J.S., “Liquid Thermal Conductivity — A data survey to 1973”, HMSO, Edinburg(1975)Google Scholar
  4. 4.
    Goldschmidt, R.,Physik. Z., 12, 417 (1911).Google Scholar
  5. 5.
    Bridgman, P.W., Proc. Amer. Acad. Arts. Sci., 59, 141 (1923).CrossRefGoogle Scholar
  6. 6.
    Rice, C.W., Phys.Rev. 23, 306 (1924).Google Scholar
  7. 7.
    Davis, A.H., Phil. Mag., 47, 972 (1924).Google Scholar
  8. 8.
    Smith, J.F.D., Ind. Eng. Chem., 22, 1246 (. 1930 ).CrossRefGoogle Scholar
  9. 9.
    Abas-Zade, A.K., Dokl. Akad. Nauk. Azerb. SSR, 3, 3 (1947).Google Scholar
  10. 10.
    Filipov, L.P., Vestnik Mosk.gos.Univ., 8 109 (1953).Google Scholar
  11. 11.
    Schmidt, E., Leidenfrost, W., Chem.Ingr.Tech., 26, 35 (1954).CrossRefGoogle Scholar
  12. 12.
    Challoner, A.R., Powell, R.W., Proc.Roy.Soc. 238A, 90 (1956).Google Scholar
  13. 13.
    Vargaftik, N.B., Proc.Conf.Thermodynamic and Transport Properties of Fluids, IME, London (1957), pp. 142.Google Scholar
  14. 14.
    Schröck, V.E., Starkman, E.S., Rev.Scient.Inst., 29, 625 (1958).CrossRefGoogle Scholar
  15. 15.
    Ziebland, Int.J.Heat Mass Transfer, 2, 273 (1961).CrossRefGoogle Scholar
  16. 16.
    Horrocks, J.K., McLaughlin, E., Ubbelohde, A.R., Trans.Farad. Soc., 59, 1110 (1963).CrossRefGoogle Scholar
  17. 17.
    Tufeu,R., Le Neindre,B., Johannin,P. C.R.Acad.Sci. Paris, 262B, 229 (1966).Google Scholar
  18. 13.
    Venart, J.E.S., J. Scient. Inst. 41, 727 (1964).CrossRefGoogle Scholar
  19. 19.
    Mukhamedzyanov, G. Kh., Usmanov, A.G., Tarzimanov, A.A.,.; Izv. Vyssh Ucheb.Zaved. Neft’i Gaz., 7 70 (1964).Google Scholar
  20. 20.
    Poltz,H., Jugel, R., Int. J.Heat Mass Transfer,10,1075(1967).CrossRefGoogle Scholar
  21. 21.
    Pitmann, J.F.T., Ph.D Thesis, ICST, London (1968).Google Scholar
  22. 22.
    Rastorguev, Yu.L., Pugach, V.V., Izv.Vyssh. Ucheb. Zaved., Neft’i Gaz., 13, 69 (1970).Google Scholar
  23. 23.
    Mani, N., Venart, J.E.S., Proc. 12th Conf. Thermal Conductivity, Birmingham, Alabama (1972) pp 166.Google Scholar
  24. 24.
    Trump,W.N., Luebke, H.W., Fowler, L., Emery, E.M., Rev.Sci. Inst., 48, 47 (1977).CrossRefGoogle Scholar
  25. 25.
    Nieto de Castro, C.A., Calado, J.C.G., Wakeham, W.A., Proc. 7th Symp. Therm. Prop, ed ASME (1978) pp 730.Google Scholar
  26. 26.
    Nagasaka, Y. and Nagashima, A., Proc. 1st Japanese Symposium on Thermophysical Properties, Tokyo (1980).Google Scholar
  27. 27.
    Healy, J.J., de Groot, J.J., Kestin, J. Physica, 82, 392 (1976).Google Scholar
  28. 28.
    Nieto de Castro, C.A., Calado, J.C.G., Wakeham, W.A. Dix, M., J. Phys. E., Sci. Inst., 9, 1073 (1976).CrossRefGoogle Scholar
  29. 29.
    Menashe, J. Wakeham, W.A., Ber. Bunsenges, Phys.Chem. 85, 340 (1981).Google Scholar
  30. 30.
    Michels, A., Sengers, J.V., Van der Gulik, P.S., Physica, 28, 1201 (1962).CrossRefGoogle Scholar
  31. 31.
    Le Neindre, Thesis, Université Paris V I (1969).Google Scholar
  32. 32.
    Nieto de Castro, C.A., Wakeham, W.A., “Thermal Conductivity 15”, Plenum Press, (1978), p. 236.Google Scholar
  33. 33.
    Menashe, J., Wakeham, W.A., Int.J. Heat Mass Transfer, 25, 661 (1982).CrossRefGoogle Scholar
  34. 34.
    Leidenfrost, W., Int. J. Heat Mass Transfer 7 447 (1964).CrossRefGoogle Scholar
  35. 35.
    Viskanta, R., Grosh, R., J. Heat Transfer, Trans. ASME, 84C, 63 (1962).CrossRefGoogle Scholar
  36. 36.
    Li, S.F.Y., Nieto de Castro, C.A., Wakeham, W.A., Int. J. Therm, (in press).Google Scholar
  37. 37.
    Hottel, H.C., Sarafim, A.F.,“Radiative Transfer”, McGraw Hill (1967).Google Scholar
  38. 38.
    Nieto de Castro, C.A., Calado, J.C.G., Wakeham, W.A., High Temperatures-High Pressure, 11, 551 (1979).Google Scholar
  39. 39.
    Menashe, J., Wakeham, W.A., Ber. Bunsenges. Phys. Chem., 86, 541 (1982).Google Scholar
  40. 40.
    Mustafa,M., Sage, M., Wakeham, W.A.,Int.J.Therm.,3,217(1982).CrossRefGoogle Scholar
  41. 41.
    Calado, J.C.G. Fareleira, J.M.N.A., Nieto de Castro, C.A., Wakeham, W.A., Int. J. Therm., 4, 193 (1983).CrossRefGoogle Scholar
  42. 42.
    Mardolcar, U.V., Wakeham, W.A., Int. J. Therm., 4, 1 (1983).CrossRefGoogle Scholar

Copyright information

© Purdue Research Foundation 1985

Authors and Affiliations

  • C. A. Nieto de Castro
    • 1
  • W. A. Wakeham
    • 2
  1. 1.Department de Química, FCULCentro de Química EstruturalLisboa, CodexPortugal
  2. 2.Department of Chemical EngineeringImperial CollegeLondonEngland

Personalised recommendations