Advertisement

Heat Transport in Geologic Media: What We Can Learn in the Laboratory

  • M. L. Linvill
  • R. O. Pohl

Abstract

Based on a study of a variety of minerals of the feldspar and the pyroxene groups, it is suggested that lamellar structures with a spacing of the order of tens of Å are responsible for the low thermal conductivity observed in these minerals above 100 K.

Keywords

Thermal Conductivity Lamellar Structure Rock Salt Phonon Scattering Amorphous Solid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    Birch, F. and Clark, H., The thermal conductivity of rocks and its dependence upon temperature and composition, Am. Jour. Sci. 238 529-612, (1940).CrossRefGoogle Scholar
  2. [2].
    Caldwell, R. F. and Klein, M. V., Experimental and theoretical study of phonon scattering from single point defects in sodium chloride, Phys. Rev. 158, 851 (1967).Google Scholar
  3. [3].
    For a recent review, see Berman, R., “Thermal Conduction in Solids”, Clarendon Press, Oxford, 1976.Google Scholar
  4. [4].
    Sibbitt, W. L., Dodson, J. G., and Tester, J. W., Thermal conductivity of rocks associated with energy extraction from hot dry rock geothermal systems, in XV. ITCC Proceedings, Plenum, NY, 1978, p. 399.Google Scholar
  5. [5].
    Vandersande, J. W., and Pohl, R. 0., Simple apparatus for the measurement of thermal diffusivity between 80 — 500 K using the modified Angstrom method, Rev. Sci. Instrum. 51, 1694 (1980).Google Scholar
  6. [6].
    Horai, K. I., “Thermal Conductivity of Rock-Forming Minerals”, J. Geophys. Res. 76, 1278 (1971).Google Scholar
  7. [7]
    Vandersande, J. W., and Pohl, R. O., Negligible effect of grain boundaries on the thermal conductivity of rocks, Geophys. Res. Lett. 9, 820 (1982). PGoogle Scholar
  8. [8]
    Pohl, R. O., and Vandersande, J. W., Thermal conductivity of nuclear waste forms and geologic media, in Mat. Res. Soc. Symp. Proc. Vol. 15 (1983), Elsevier Science Publishing Co., Inc., p. 711.Google Scholar
  9. [9].
    Vandersande, J. W., Phonon scattering by nitrogen aggregates in intermediate type natural diamonds, in “Phonon Scattering in Condensed Matter”, H. J. Maris, Plenum Press, N. Y. (1980), p. 247.CrossRefGoogle Scholar
  10. [10].
    Worlock, J. M., Thermal conductivity in sodium chloride containing silver colloids, Phys. Rev. 147, 636 (1966).Google Scholar
  11. [11].
    Matsuo, T. and Suzuki, H., Effect of plastic deformation on j the thermal conductivity of bismuth crystals, J. Phys. Soc. Japan 41, 1692 (1976), and 43, 1974 (1977).Google Scholar
  12. [12].
    Vandersande, J. W., Chopra, P. N., and Pohl, R. O., Phonon scattering by twin planes, in “Phonon Scattering in Condensed Matter”, Springer Verlag, Berlin, W. Eisenmenger, 1984, p. 182.Google Scholar
  13. [13]
    Putnis, A. and McConnell, J. D. C., “Principles of Mineral Behavior”, Elsevier, New York, 1980, p. 246 ff.Google Scholar
  14. [14].
    Champness, P. E., and Lormer, G. W., Exsolution in silicates, in “Electron Microscopy in Mineralogy”, Springer Verlag, Berlin, 1976, H.-R. Wenk, ed., p. 182.Google Scholar

Copyright information

© Purdue Research Foundation 1985

Authors and Affiliations

  • M. L. Linvill
    • 1
  • R. O. Pohl
    • 1
  1. 1.Laboratory of Atomic and Solid State PhysicsCornell UniversityIthacaUSA

Personalised recommendations