Advertisement

Thermal Conduction in Composites

  • G. W. Milton
  • K. Golden

Abstract

We consider the effective thermal conductivity of two-component isotropic composites and review bounds obtained through analytic continuation of the effective conductivity as a function of the component conductivities. The connection between this conductivity function and Stieltjes functions is emphasized. Many of the well-known bounds on the effective thermal conductivity correspond to bounds on Stieltjes functions and these bounds, in turn, are closely related to Padé approximants.

Keywords

Effective Conductivity Effective Elastic Modulus Conductivity Function Effective Dielectric Constant Complex Dielectric Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen, Annalen der Physik 24: 636 (1935).CrossRefGoogle Scholar
  2. 2.
    R. Landauer, Electrical conductivity in inhomogeneous media, in: “Electrical Transport and Optical Properties of Inhomogeneous Media,” J.C. Garland and D.B. Tanner, eds., American Institute of Physics, New York (1978).Google Scholar
  3. 3.
    G.W. Milton, Correlation of the electromagnetic and elastic properties of composites and microgeometries corresponding with effective medium approximations, in: “Physics and Chemistry of Porous Media,” D.L. Johnson and P.N. Sen, eds., American Institute of Physics, New York (1984).Google Scholar
  4. 4.
    D.J. Bergman, The dielectric constant of a composite material-a problem in classical physics, Phys. Rep. 43: 377 (1978).CrossRefGoogle Scholar
  5. 5.
    D.J. Bergman, Rigorous bounds for the complex dielectric constant of a two-component composite, Ann. Phys. 138: 78 (1982).CrossRefGoogle Scholar
  6. 6.
    G.W. Milton, Bounds on the complex permittivity of a two-component composite, J. Appl. Phys. 52: 5236 (1981).Google Scholar
  7. 7.
    G.W. Milton, Bounds on the transport and optical properties of a two-component composite material, J. Appl. Phys. 52: 5294 (1981).CrossRefGoogle Scholar
  8. 8.
    B.U. Felderhof, Bounds for the effective dielectric constant of disordered two-phase materials, J. Phys. C 15: 1731 (1982).CrossRefGoogle Scholar
  9. 9.
    B.U. Felderhof, Bounds for the complex dielectric constant of a two-phase composite, submitted for publication.Google Scholar
  10. 10.
    K. Golden and G. Papanicolaou, Bounds for effective parameters of heterogeneous media by analytic continuation, Commun. Math. Phys. 90: 473 (1983).CrossRefGoogle Scholar
  11. 11.
    K. Golden, Bounds for the effective parameter of multicomponent media by analytic continuation, Ph.D. thesis, Courant Institute of Mathematical Sciences, New York University (1984).Google Scholar
  12. 12.
    G.A. Baker, Jr., Best error bounds for Padé approximants to convergent series of Stieltjes, J. Math. Phys. 10: 814 (1969).CrossRefGoogle Scholar
  13. 13.
    G.A. Baker, Jr., “Essentials of Padé Approximants,” Academic Press, New York (1975).Google Scholar
  14. 14.
    N.W. Ashcroft and N.D. Mermin, “Solid State Physics,” Saunders College, Philadelphia (1976).Google Scholar
  15. 15.
    W.F. Brown, Solid Mixture Permittivities, J. Chem. Phys. 23: 1514 (1955).Google Scholar
  16. 16.
    G.W. Milton, Bounds on the electromagnetic, elastic and other properties of two-component composites, Phys. Rev. Lett. 46: 542 (1981).CrossRefGoogle Scholar
  17. 17.
    M.N. Miller, Bounds for effective electrical, thermal and magnetic properties of heterogeneous materials, J. Math. Phys. 10: 1988 (1969).CrossRefGoogle Scholar
  18. 18.
    R.C. McPhedran and G.W. Milton, Bounds and exact theories for the transport properties of inhomogeneous media, Appl. Phys. A 26: 207 (1981).CrossRefGoogle Scholar
  19. 19.
    S. Torquato and G. Stell, Microstructure of two-phase random media. III. The n-point matrix probability functions for fully penetrable spheres, J. Chem. Phys. 79: 1505 (1983).CrossRefGoogle Scholar
  20. 20.
    B.U. Felderhof, Bounds for the effective dielectric constant of a suspension of uniform spheres, J. Phys. C. 15: 3953 (1982).CrossRefGoogle Scholar
  21. 21.
    D.J. Bergman, The dielectric constant of a simple cubic array of identical spheres, J. Phys. C. 12: 4947 (1979).CrossRefGoogle Scholar
  22. 22.
    R.C. McPhedran and D.R. McKenzie, Electrostatic and optical resonances of arrays of cylinders, Appl. Phys. 23: 223 (1980).CrossRefGoogle Scholar
  23. 23.
    A.M. Dykhne, Conductivity of a two-dimensional two-phase system, Soviet Physics JETP, 32: 63 (1971).Google Scholar
  24. 24.
    B. Abeles and J.I. Gittleman, Composite materials films: optical properties and applications, Appl. Optics 15: 2328 (1976).CrossRefGoogle Scholar
  25. 25.
    O. Wiener, “Abhandlungen der Mathematisch-Physischen Klasse der Königlichen Sächsischen Gesellschaft der Wissenschaften,” 32: 509 (1912).Google Scholar
  26. 26.
    Z. Hashin and S. Shtrikman, A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. Appl. Phys. 10: 3125 (1962).CrossRefGoogle Scholar
  27. 27.
    P. B. Corson, Correlation functions for predicting properties of heterogeneous materials. IV. Effective thermal conduc¬tivity of two-phase solids, J. Appl. Phys. 45: 3180 (1974).CrossRefGoogle Scholar
  28. 28.
    A.L. De Vera, Jr., and W. Strieder, Upper and lower bounds on the thermal conductivity of a random, two-phase material, J. Phys. Chem. 81: 1783 (1977).CrossRefGoogle Scholar
  29. 29.
    L. Tartar and F. Murat, private communication (1981).Google Scholar
  30. 30.
    K.A. Lurie and A.V. Cherkaev, Exact estimates of conductivity of composites, Proc. Roy. Soc. to appear; see also Dokl. Akad. Nauk. 264: 1128 (1982).Google Scholar
  31. 31.
    M. Beran, Use of a variational approach to determine bounds for the effective permittivity of a random medium, Nuovo Cimento 38: 771 (1965).CrossRefGoogle Scholar
  32. 32.
    S. Torquato and G. Stell, “Microscopic Approach to Transport in Two-Phase Random Media,” (CEAS Report #352, 1980 ).Google Scholar
  33. 33.
    M. Beran and J. Molyneux, Use of classical variational principles to determine bounds for the effective bulk modulus in heterogeneous media, Q. Appl. Math. 24: 107 (1966).Google Scholar
  34. 34.
    J.J. McCoy, On the displacement field in an elastic medium with random variations of material properties, in: “Recent Advances in Engineering Science,” Pergamon Press, New York, 5:235 (1970).Google Scholar
  35. 35.
    G.W. Milton and N. Phan-Thien, New bounds on the effective elastic moduli of two-component materials, Proc. Roy. Soc. Lond. A380: 305 (1982).CrossRefGoogle Scholar
  36. 36.
    A.K. Common, Padé approximants and bounds to series of Stieltjes, J. Math. Phys. 9: 32 (1968).CrossRefGoogle Scholar
  37. 37.
    E. Kroner, Bounds for the effective elastic moduli of disordered materials, J. Mech. Phys. Solids 25: 137 (1977).CrossRefGoogle Scholar
  38. 38.
    G.W. Milton, A comparison of two methods for deriving bounds on the effective conductivity of composites, in: “Macroscopic Properties of Disordered Media,” R. Burridge, S. Childress and G. Papanicolaou, eds., Springer Verlag, New York (1982).Google Scholar
  39. 39.
    J.B. Keller, A theorem on the conductivity of a composite medium, J. Math. Phys 5: 548 (1964).CrossRefGoogle Scholar
  40. 40.
    K. Schulgasser, On the phase interchange relationship for composite materials, J. Math. Phys. 17: 378 (1976).CrossRefGoogle Scholar
  41. 41.
    J.G. Berryman, private communication (1983).Google Scholar
  42. 42.
    Y. Kantor and D. J. Bergman, Improved rigorous bounds on the effective elastic moduli of a composite material, J. Mech. Phys. Solids, 32: 41 (1984).CrossRefGoogle Scholar

Copyright information

© Purdue Research Foundation 1985

Authors and Affiliations

  • G. W. Milton
    • 1
  • K. Golden
    • 2
  1. 1.Baker LaboratoriesCornell UniversityIthacaUSA
  2. 2.Courant InstituteNew York UniversityNew YorkUSA

Personalised recommendations