Skip to main content

Radiative Contribution to the Thermal Diffusivity and Conductivity of a Silicon Carbide Fiber Reinforced Glass-Ceramic

  • Chapter
Thermal Conductivity 18

Abstract

The thermal diffusivity and conductivity of a silicon carbide fiber-reinforced lithium aluminosilicate glass-ceramic was measured using the laser-flash method. As indicated by the effect of specimen thickness on thermal conductivity and its positive temperature dependence, heat transfer by radiation makes a significant contribution to the total thermal conductivity. The observed dependence of the effect of specimen thickness on thermal conductivity suggests that radiative heat transfer between the carbon coated surfaces of dielectric materials for the laser-flash technique may be partially governed by the view factor between the specimen surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Berman, “Thermal Conduction in Solids”, Clarendon Press, Oxford (1976).

    Google Scholar 

  2. D. W. Lee and W. D. Kingery, J. Amer. Ceram. Soc., 43 (1960) 594.

    Article  CAS  Google Scholar 

  3. J. J. Brennan, L. D. Bentsen and D. P. H. Hasselman, J. Mater. Sci., 17 (1982) 2337.

    Google Scholar 

  4. S. Yajima, K. Okamura, J. Hayashi and M. Omori, J. Amer. Ceram. Soc., 59 (1976) 324.

    Article  CAS  Google Scholar 

  5. W. J. Parker, R. J. Jenkins, C. P. Butler and G. L. Abbott, J. Appl. Phys., 32 (1961) 1679.

    Google Scholar 

  6. R. C. Heckman, J. Appl. Phys., 44 (1973) 1455.

    Google Scholar 

  7. A. E. Powers, Knolls Atomic Power Laboratory, Report KAPL-2145, 1961.

    Google Scholar 

  8. W. A. Gray, and R. Muller, “Engineering Calculations in Radiative Heat Transfer”, ( Pergamon Press, New York, 1974 ), p. 29.

    Google Scholar 

  9. R. Siegel and J. R. Howell, “Thermal Radiation Heat Transfer”, ( McGraw-Hill, New York, 1972 ) p. 787.

    Google Scholar 

  10. S. P. Howiett, R. Taylor, and R. Morrell, “Thermal Conductivity-17”, (Plenum Press, New York, 1983), p. 447, J. G. Hust, Ed.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Purdue Research Foundation

About this chapter

Cite this chapter

Bentsen, L.D., Hasselman, D.P.H., Brennan, J.J. (1985). Radiative Contribution to the Thermal Diffusivity and Conductivity of a Silicon Carbide Fiber Reinforced Glass-Ceramic. In: Ashworth, T., Smith, D.R. (eds) Thermal Conductivity 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4916-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4916-7_47

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4918-1

  • Online ISBN: 978-1-4684-4916-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics