Lattice Thermal Conductivity at Normal and High Temperatures

  • Guy K. White


The heat conductivity λ of a crystal lattice is limited at normal and high temperatures by mutual scattering of the lattice waves. Theoretical models have shown that this scattering depends strongly on the lattice spectrum (or appropriate value of Debye θD) and on the anharmonic coupling (or Grüneisen parameter γ). Comparison of measured λ(T) for representative crystals with the values calculated from a modified Leibfried-Schlömann equation illustrate difficulties inherent in choosing appropriate values for γ and θ.


Lattice Thermal Conductivity Phonon Dispersion Alkali Halide Lattice Wave Expansivity Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.A. Slack, The Thermal Conductivity of Non-Metallic Crystals, Solid State Physics 34: 1 (1979).CrossRefGoogle Scholar
  2. 2.
    R. Berman, Thermal Conduction in Solids, Clarendon Press, Oxford (1976).Google Scholar
  3. 3.
    G.A. Alers, Use of Sound Velocity Measurements in Determining the Debye Temperature of Solids, Physical Acoustics (Ed. W.P. Mason) Vol. III-B, Academic Press, New York (1965).Google Scholar
  4. 4.
    O.L. Anderson, A. Simplified Method for Calculating the Debye Temperature from Elastic Constants, J. Phys. Chem. Solids 24: 909 (1963).CrossRefGoogle Scholar
  5. 5.
    D.N. Talwar, M. Vandevyer, M. Kunc and M. Zigone, Lattice Dynamics of Zinc Chalcogenides Under Compression: Phonon Dispersion, Mode Grüneisen and Thermal Expansion, Phys. Rev. B24: 741 (1981).Google Scholar
  6. 6.
    T.H.K. Barron, J.G. Collins and G.K. White, Thermal Expansion of Solids at Low Temperatures, Adv. Phys. 29: 609 (1980).CrossRefGoogle Scholar
  7. 7.
    Y.S. Touloukian, R.W. Powell, C.Y. Ho and P.G. Klemens, Thermal Conductivity of Non-Metallic Solids in Thermophysical Properties of Matter, Vol. 2, Plenum Press, New York (1970).Google Scholar
  8. 8.
    J. Eckert, W.B. Daniels, and J.D. Axe, Phonon Dispersion and mode Grüneisen Parameters in Neon at High Density, Phys. Rev. 814: 3649 (1976).Google Scholar
  9. 9.
    F. Clayton and D.N. Batchelder, Temperature and Volume Depend ence of the Thermal Conductivity of Solid Argon, J. Phys. C. 6:1213 (1973).CrossRefGoogle Scholar
  10. 10.
    D. Gerlich and P. Andersson, Temperature and Pressure Affects on the Thermal Conductivity and Heat Capacity of CsCℓ, CsBr and CsI, J. Phys. C. 15: 5211 (1982).CrossRefGoogle Scholar
  11. 11.
    C.A. Swenson, Equation of State of Cubic Solids: Some Generalizations, J. Phys. Chem. Solids 29: 1337 (1968).CrossRefGoogle Scholar
  12. R.W. Roberts and R. Ruppin, Volume Dependence of the Grüneisen Parameter of Alkali Halides, Phys. Rev. B4:2041 (1971).Google Scholar
  13. 13.
    H.H. Demarest, Lattice Model Calculation of Hugoniot Curves and the Grüneisen Parameter at High Pressure for the Alkali Halides, J. Phys. Chem. Solids 35: 1393 (1974).CrossRefGoogle Scholar
  14. 14.
    G.K. White, Lattice Conductivity and Lorenz Ratio of Standard Metals in Thermal Conductivity, p. 37 (Ed. C.Y. Ho and R.E. Taylor) Plenum Press, New York (1969).Google Scholar

Copyright information

© Purdue Research Foundation 1985

Authors and Affiliations

  • Guy K. White
    • 1
  1. 1.CSIRO Division of Applied PhysicsSydneyAustralia

Personalised recommendations