Advertisement

Correlation Between the Structural Parameters and the Thermal Conductivity of Chalcopyrite-Type Ternary Compounds

  • P. Kistaiah
  • K. Satyanarayana Murthy
  • Leela Iyengar

Abstract

The room-temperature thermal conductivity and the tetragonal distortion were calculated for a number of covalently bonded I-III-VI2 (ABC2) compound semiconductors. Comparison of thermal properties and peculiarities of chemical bonding in these compounds lead to the conclusion that there is a close relationship between these parameters which is essentially described by the anharmonicity of the lattice. On the basis of free energy considerations with anharmonic contributions included, a physical model has been suggested to explain the relation between the thermal conductivity and the tetragonal distortion of I-III-VI2 chalcopyrites.

Keywords

Thermal Conductivity Ternary Compound Zincblende Structure Tetragonal Distortion Chalcopyrite Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Berger, L. I., and Prochukhan, V. D., “Ternary Diamond-Like Semiconductors”, Consultants Bureau Enterprises, Inc. New York, 47 (1969).Google Scholar
  2. [2]
    Shay, J. L., and Wernick, J. H., “Ternary Chalcopyrite Semi-conductors: Growth, Electronic Properties and Applications” Pergamon Press, Oxford (1975).Google Scholar
  3. [3]
    Abrahams, S. C., and Bernstein, J. L., J. Chem. Phys. 59, 5415 (1973).CrossRefGoogle Scholar
  4. [4]
    Smith, R. C., J. Phys. Suppl. 36, C3–89 (1975).Google Scholar
  5. [5]
    Iseler, G. W., Kildal, H. and Menyuk, N., Inst. Phys. Conf. Ser. 35, 73 (1977).Google Scholar
  6. [6]
    Wagner, S., Inst. Phys. Conf. Ser. 35, 205 (1977).Google Scholar
  7. [7]
    Kazmerski, L. L., Inst. Phys. Conf. Ser. 35, 217 (1977).Google Scholar
  8. [8]
    Bucher, E., Appl. Phys. 17, 1 (1978).CrossRefGoogle Scholar
  9. [9]
    Pamplin, B. R., Kiyosawa, T., and Masumoto, K., Prog. Crystal Growth Charact. 1, 331 (1979).CrossRefGoogle Scholar
  10. [10]
    Leibfried, G., and Schlömann, E., Nachr. Akad. Wiss. Gottingen Math. - Physik, kl. IIa, No. 4, 71 (1954).Google Scholar
  11. [11]
    Noolandi, J., Phys. Rev. B 10, 2490 (1974).CrossRefGoogle Scholar
  12. [12]
    Phillips, J. C., Festkorperprobleme XVII, 109 (1977).Google Scholar
  13. [13]
    Simons, C., and Bloch, A. N., Phys. Rev. B7, 2754 (1973).CrossRefGoogle Scholar
  14. [14]
    Shaukat, A., and Singh, R. D., J. Phys. Chem. Solids, 39, 1269 (1978).CrossRefGoogle Scholar
  15. [15]
    Weaire, D., and Noolandi, J., J. Phys. Suppl. 36, C2–27 (1975)Google Scholar
  16. [16]
    Neumann, H., Kristall and Technik, 15, 849 (1980).CrossRefGoogle Scholar
  17. [17]
    Binsma, J. J. M., Giling, L. J., and Bloem, J., Phys. Sat. Sol (a) 63, 595 (1981).CrossRefGoogle Scholar
  18. [18]
    Voigt, W., Lehrbuch der Kristallphysik, Stuttgart (1966).Google Scholar
  19. [19]
    Kistaiah, P., Venudhar, Y. C., Murthy, K. S., Iyengar, L., and Rao, K. V. K., Pramana, 16, 281 (1981).CrossRefGoogle Scholar
  20. [20]
    Kistaiah, P., Venudhar, Y. C., Murthy, K. S., Iyengar, L., and Rao, K. V. K., J. Phys. D 14, 1311 (1981).CrossRefGoogle Scholar
  21. [21]
    Kistaiah, P., Venudhar, Y. C., Murthy, K. S., Iyengar, L., and Rao, K. V. K., J. Mats. Sci. 16, 1417 (1981).CrossRefGoogle Scholar
  22. [22]
    Kistaiah, P., Venudhar, Y. C., Murthy, K. S., Iyengar, L., and Rao, K. V. K., J. Appl. Cryst. 14, 281 (1981).CrossRefGoogle Scholar
  23. [23]
    Kistaiah, P., Venudhar, Y. C., Murthy, K. S., Iyengar, L., and Rao, K. V. K., J. Less. Common Metals, 77, P 9 (1981)CrossRefGoogle Scholar
  24. [24]
    Kistaiah, P., Ph.D. Thesis, Osmania University (India ) (1982).Google Scholar
  25. [25]
    Ashcroft, N. W., and Mermin, N. D., Solid State Physics, New York (1976).Google Scholar
  26. [26]
    Neumann, H., Crystal Res. and Technol. 659 (1983).Google Scholar
  27. [27]
    Kistaiah, P., and Satyanarayana Murthy, K., J. Less. Common Metals, (1984)(In Press).Google Scholar
  28. [28]
    Callaway, J., Phys. Rev. 113, 1946 (1959).CrossRefGoogle Scholar
  29. [29]
    Steigmeier, E., “Thermal Conductivity”, Academic Press, New York, 2, 212 (1969).Google Scholar
  30. [30]
    Slack, G. A., Phys. Rev. B6, 3791 (1972).CrossRefGoogle Scholar
  31. [31]
    Oshcherin, B. N., Phys. Stat. Sol. (a) 35, K35 (1976).CrossRefGoogle Scholar
  32. [32]
    Ioffe, A. F., “Semiconductor Physics” (in Russian) [Moscow-Leningrad, Acad. Sci. USSR Press, (1957).Google Scholar
  33. [33]
    Krebs, H., Acta Cryst. 9, 95 (1956).CrossRefGoogle Scholar
  34. [34]
    Petrov, A. V., and Shtrum, E. L., Sov. Phys. — Solid State, 4, 1061 (1962).Google Scholar
  35. [35]
    Spitzer, D. P., J. Phys. Chem Solids, 31, 19 (1970).CrossRefGoogle Scholar
  36. [36]
    Sanchez Porras, G. P., and Wasim, S. W., Phys. Stat. Sol. (a) 59, K175 (1980).CrossRefGoogle Scholar
  37. [37]
    Gasanov, S. A., and Magomedov, Y. B., Sov. Phys. — Semicond. 4, 8 (1971).Google Scholar

Copyright information

© Purdue Research Foundation 1985

Authors and Affiliations

  • P. Kistaiah
    • 1
  • K. Satyanarayana Murthy
    • 1
  • Leela Iyengar
    • 1
  1. 1.Department of Physics University College of ScienceOsmania UniversityHyderabadIndia

Personalised recommendations