The Thermal Conductivity and Expansion Enhancement Associated with Formation of the Superionic State in SrCl2

  • J. P. Moore
  • F. J. Weaver
  • R. S. Graves
  • D. L. McElroy


A second-order phase transition in SrCl2 near 1000 K produces superionic conduction and is often called the Bredig transition. This anion disordering occurs in other technologically important materials, such as U02, but at very high temperatures where measurements are difficult. Property studies on SrC12 at low temperatures may aid future high temperature studies.


Seebeck Coefficient Fuse Quartz Uranium Dioxide Nuclear Regulatory Commission Strontium Chloride 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. S. Dworkin and M. A. Bredig, J. Chem. Eng. Data 67, 697–8, (1963).Google Scholar
  2. 2.
    W. Schröter and J. Nolting, “Specific Heats of Crystals with the Fluorite Structure,” Journal de Physique C6 41(7), 66 (1980).Google Scholar
  3. 3.
    A. V. Chadwick, F. G. Kirkwood, and R. Saghafian, “Point Defect Parameters for Strontium Chloride from Ionic Conductivity Studies,” Journal de Physique C6, supplement to Vol. 41, page C6–216 (1980).Google Scholar
  4. 4.
    J. P. Moore, F. J. Weaver and D. L. McElroy, “The Thermal Conductivities of SrC12 and SrF2 from 85 to 400 K,” in Proceedings of the 18th Thermal Conductivity Conference, T. Ashworth, ed., Plenum Press, New York (in press).Google Scholar
  5. 5.
    T. G. Kollie, D. L. McElroy, J. T. Hutton and W. M. Ewing, “A Computer Operated Fused Quartz Differential Dilatometer,” p. 129–146 in Thermal Expansion — 1973, AIP Conference Proceedings 17, R. E. Taylor and G. L. Denman, American Institute of Physics, New York (1974).Google Scholar
  6. 6.
    T. G. Kollie, “Measurement of the Thermal Expansion Coefficient of Nickel from 300 to 1000 K and Determination of the Power-Law Constants Near the Curie Temperature,” Phys. Rev. B 16 (11), 4872–4881 (1977).CrossRefGoogle Scholar
  7. 7.
    M. Shand, R. C. Hanson, C. E. Derrington, and M. O’Keefe, Solid State Communications 18, 769–772 (1976).CrossRefGoogle Scholar
  8. 8.
    W. Schroter, “Anomale Spezifische Wärmen vom Kristallen Mit Fluoritstruktur,” PhD Dissertation, Gottingen (1979).Google Scholar
  9. 9.
    T. G. Godfrey, W. Fulkerson, T. G. Kollie, J. P. Moore and D. L. McElroy, “Thermal Conductivity of Uranium Dioxide from -57° to 1100°C by a Radial Heat Flow Technique,” J. Amer. Ceram. Soc. 48 (6), 297–305 (1965).CrossRefGoogle Scholar
  10. 10.
    W. Fulkerson, J. P. Moore, and D. L. McElroy, “Comparison of the Thermal Conductivity, Electrical Resistivity and Seebeck Coefficient of a High-Purity Iron and an Armco Iron to 1000°C,” J. Appl. Phys. 37 (7), 2639–53 (1966).CrossRefGoogle Scholar
  11. 11.
    W. Fulkerson, J. P. Moore, R. K. Williams, R. S. Graves and D. L. McElroy, “Thermal Conductivity, Electrical Resistivity, and Seebeck Coefficient of Silicon from 100°C to 1300°K,” Phys. Rev. 167 (3), 765–82 (1968).CrossRefGoogle Scholar
  12. 12.
    Private Communication from J. B. Bates, Oak Ridge National Laboratory, October 1982.Google Scholar
  13. 13.
    A. Eucken, Forsch. Gebiete Ingenieur. B3, Forschngshaft 353 (1932); Ceram. Abs. 11(11), 576 (1932); Ceram. Abs. 12 (6), 231 (1933).Google Scholar
  14. 14.
    R. W. Powell, C. Y. Ho, and P. E. Liley, “Thermal Conductivity of Selected Materials,” NSRDS-NBS 8, (1966).Google Scholar
  15. 15.
    R. K. Williams, “Enhanced Thermal Conduction Associated with Formation of the Superionic State,” Phys. Rev. B 26 (10), 5983–5986 (1982).CrossRefGoogle Scholar
  16. 16.
    J. K. Fink, M. G. Chasanov, and L. Leibowitz, “Thermophysical Properties of Uranium Dioxide,” J. of Nucl. Materials, 102, 17–25 (1981).CrossRefGoogle Scholar
  17. 17.
    “Matpro — Version II,” A handbook of materials properties for use in the analysis of light water reactor fuel rod behavior, compiled and edited by Donald L. Hagrman and Gregory A. Rexmann, NUREG/CR-0497, (1979).Google Scholar
  18. 18.
    Private communication from Roy Taylor, U.M.I.S.T., Manchester England, July 25, 1983.Google Scholar

Copyright information

© Purdue Research Foundation 1985

Authors and Affiliations

  • J. P. Moore
    • 1
  • F. J. Weaver
    • 2
  • R. S. Graves
    • 2
  • D. L. McElroy
    • 2
  1. 1.Martin Marietta Energy Systems, Inc.Oak RidgeUSA
  2. 2.Martin Marietta Energy Systems, Inc. Metals and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations