Ecological Research on Arthropods in Central Amazonian Forest Ecosystems with Recommendations for Study Procedures

  • Joachim Adis
  • Herbert O. R. Schubart
Part of the NATO Conference Series book series (NATOCS, volume 7)


In this work, we conducted three comparative studies on arthropods in Central Amazonian forest ecosystems.

  1. (1)

    The soil faunas from seven forest types were compared using the soil extraction method of Kempson. Anthropod abundance varied between 3,500 and 9,000 ind/m2. Abundance generally was higher in inundation forests when compared to dryland forests. Acari and Collembola represented 60–80% of the soil fauna collected. Dominance of frequent taxa varied significantly among forest types. For preliminary studies of ecosystems, particularly orientation projects such as these, we recommend modern standing crop methods.

  2. (2)

    Abundance of arthropods and dominance of “key taxa” in different strata (soil/litter, trunk, and canopy) of riverine inundation forests, one in the Black Water Region and one in the White Water Region, were compared with a primary forest in the Dryland Region during the rainy season. Sampling methods were Kempson soil extraction, ground and arboreal photo-eclectors, and canopy fogging. Relative abundance of arthropods (Acari and Collembola disregarded) ranged between 1,000 and 1,500 ind/m2 in the soil and from 1,000 to 7,000 ind/m2 in ground photo-eclectors. Between 1,000 and 8,000 arthropods occurred per tree trunk and 30 to 60 ind/m2 were collected from the canopy. Relative abundance of arthropods was somewhat higher in the black water inundation forest, intermediate in the primary dryland forest, and lower in the white water inundation forest. Dominance of taxa varied significantly among strata within the forests and among forest types as well. Zoophagous groups were predominant. On the forest floor, primary decomposers other than Diptera (in particular, larvae) were almost absent. We recommend a combination of permanent collecting methods, complemented by standing crop samplings, for future comparative studies on arthropod populations in neotropical forest ecosystems.

  3. (3)

    Population fluctuations of arthropods may correspond somewhat with altering abiotic conditions. The activity density of arthropods on trunks was studied during and between seasons both in a black and a white water inundation forest, as well as in a primary and a secondary dryland forest. More arthropods were caught during the rainy season, except in the primary dryland forest. Formicidae represented the predominant group with 36–81% of the total catch. Dominance of taxa in samples varied considerably within and between seasons. Pronounced trunk ascents of ants were observed during the dry season in all forest types. A dry, warm climate is believed to stimulate tree inhabiting, meso-xerophilous ant species to become highly active and to migrate between canopy, trunk region, and forest floor. With the beginning of the rainy season and a changing microclimate, their activity density decreased steadily. In the black water inundation forest, numerous non-flying (terricolous) arthropods migrated into the trunk-canopy region with the beginning of the rainy season, where they remained throughout forest inundation (5–6 months duration). Trunk ascents of hygrophilous species apparently are influenced by rising wetness on the forest floor and increasing relative humidity in the lower trunk region. Thus, for the Central Amazonian forests we studied, we could not confirm the hypothesis that tropical ecosystems with sufficiently high numbers of species lack population fluctuations.


We conclude this paper by discussing theories about the diversity of Amazonian arthropods and by posing timely research questions for tropical studies. Integrated long term studies are required to achieve indepth insights into the structure and function of neotropical forest ecosystems. Information obtained by basic research is the foundation for ecological criteria to be used in biological management plans for Amazonia.


Rainy Season Forest Type Forest Floor Soil Fauna Total Catch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Adis, J. 1977. Programa minimo para anâlises de ecossistemas: Artrópodos terrestres em florestas inundveis da Amazônia Central. Acta Amazonica 7 (2): 223–229.Google Scholar
  2. Adis, J. 1979. Problems of interpreting arthropod sampling with pitfall traps. Zool. Anz. 202 (3/4): 177–184.Google Scholar
  3. Adis, J. 1981. Comparative ecolgical studies of the terrestrial arthropod fauna in Central Amazonian inundation-forests. Amazoniana 7 (2): 87–173.Google Scholar
  4. Adis, J. 1982a. Eco-entomological observations from the Amazon. II. Carabids are adapted to inundation-forests! Coleopt. Bull. 36 (2): 440–441.Google Scholar
  5. Adis, J. 1982b. Zur Besiedlung zentralamazonischer Uberschwemmungswälder (Värzea-Gebiet) durch Carabiden (Coleoptera). Arch. Hydrobiol. 95 (1/4): 3–15.Google Scholar
  6. Adis, J. 1984a, in press. “Seasonal Igapó-forests” of Central Amazonian black-water rivers and their terrestrial arthropod fauna. In H. Sioli, ed. The Amazon-limnology and landscape ecology of a mighty tropical river and its basin. Monogr. Biol., Junk, The Hague, The Netherlands.Google Scholar
  7. Adis, J. 1984a, in press. “Seasonal Igapó-forests” of Central Amazonian black-water rivers and their terrestrial arthropod fauna. In H. Sioli, ed. The Amazon-limnology and landscape ecology of a mighty tropical river and its basin. Monogr. Biol., Junk, The Hague, The Netherlands.Google Scholar
  8. Adis, J. 1984a, in press. “Seasonal Igapó-forests” of Central Amazonian black-water rivers and their terrestrial arthropod fauna. In H. Sioli, ed. The Amazon-limnology and landscape ecology of a mighty tropical river and its basin. Monogr. Biol., Junk, The Hague, The Netherlands.Google Scholar
  9. Adis, J., K. Furch, and U. Irmler. 1979. Litter production of a Central-Amazonian black water inundation forest. Trop. Ecol. 20 (2): 236–245.Google Scholar
  10. Adis, J., K. Furch, and U. Irmler. 1979. Litter production of a Central-Amazonian black water inundation forest. Trop. Ecol. 20 (2): 236–245.Google Scholar
  11. Anderson, A.B., and W.W. Benson. 1980. On the number of tree species in Amazonian forests. Biotropica 12 (3): 235–237.CrossRefGoogle Scholar
  12. Beck, L. 1971. Bodenzoologische Gliederung and Charakterisierung des amazonischen Regenwaldes. Amazoniana 3 (1): 69–132.Google Scholar
  13. Beck, L. 1976. Zum Massenwechsel der Makro-Arthropodenfauna des Bodens in Uberschwemmungswäldern des zentralen Amazonasgebietes. Amazoniana 6 (1): 1–20.Google Scholar
  14. Beck, L. 1983. Bodenzoologie der amazonischen Uberschwemmungswälder. Amazoniana 8 (1): 91–99.Google Scholar
  15. Bergamin, H. F., ed. 1981. Museu Goeldi nos 30 anos do CNPq. Suppl. Acta Amazonica 11(1):1–206.Google Scholar
  16. Braga, P.I.S. 1979. Subdivisâo fitogeogrâfica, tipos de vegetacâo, conservacâo e inventârio florístico da floresta amaz6nica. Suppl. Acta Amazonica 9 (4): 53–80.Google Scholar
  17. Council of Environmental Quality and U.S. Foreign Ministery. 1980. The global 2000 report to the President. U.S. Gov. Print. Off., Washington, DC USA.Google Scholar
  18. Erwin, T.L. 1982. Tropical forests: Their richness in Coleoptera and other arthropod species. Coleopt. Bull. 36 (1): 74–75.Google Scholar
  19. Erwin, T. L. 1983. Beetles and other insects of tropical forest canopies of Manaus, Brazil, sampled by insecticidal fogging. Pages 59–75 in S.L. Sutton, T.C. Whitmore, and A.C. Chadwick, eds. Tropical land in forests: Ecology and management. Blackwell, Oxford, Great Britain.Google Scholar
  20. Erwin, T.L., and J. Adis. 1982. Amazonian inundation forests: Their role as short-term refuges and generators of species richness and taxon pulses. Pages 358–371 in G.T. Prance, ed. Biological diversification in the tropics. Proc. Int. Symp. Trop. Biol. Columbia Univ. Press, New York, NY USA.Google Scholar
  21. Fairbridge, R.W. 1961. Eustatíc changes in sea level. Phys. Chem. Earth 4: 99–185.CrossRefGoogle Scholar
  22. Falesí, I.C., T.E. Rodrigues, I.K. Morikawa, and R.S. Reis. 1971. Solos do Distrito Agropecuârio da SUFRAMA (Trecho: km 30–km 79, Rod. BR-174). Instítuto de Pesquísas e Experimentacäo Agropecurías da Amazônia Ocidental (IPEAAOc), Sér. Solos 1 (1): 1–99.Google Scholar
  23. Fearnsíde, P.M. 1982a. Deforestation in the Brazilian Amazon: How fast is it occurring? Interciencia 7 (2): 82–88.Google Scholar
  24. Fearnsíde, P.M. 1982b. Desmatamento na Amazônia Brasileíra: Com que íntensidade vem ocorrendo? Acta Amazonica 12 (3): 579–590.Google Scholar
  25. Fittkau, E.J. 1970. Esboco de uma divisäo ecologica da Regiäo Amazônica. Pages 365–372 in I.M. Idrobo, ed. II. Symposío y foro de biologia tropical amazônica. Assoc. Biol. Trop., Bogotâ, Colombia.Google Scholar
  26. Fittkau, E.J. 1971. Ökologische Gliederung des Amazonas-Gebietes auf geochemischer Grundlage. Münster. Forsch. Geol. Paläontol. 20 /21: 35–50.Google Scholar
  27. Fittkau, E.J. 1973. Artenmannigfaltigkeit amazonischer Lebensräume aus ökologischer Sicht. Amazoníana 4 (3): 321–340.Google Scholar
  28. Fíttkau, E.J. 1982. Struktur, Funktion und Díversitat zentralamazonischer Ökosysteme. Arch. Hydrobiol. 95 (1/4): 29–45.Google Scholar
  29. Franken, M. 1979. Major nutrient and energy contents of the litter-fall of a riveríne forest of Central Amazonia. Trop. Ecol. 20 (2): 211–224.Google Scholar
  30. Funke, W. 1971. Food and energy turnover of leaf-eating insects and their influence on primary production. Ecol. Stud. 2: 81–93.CrossRefGoogle Scholar
  31. Funke, W. 1972. Energieumsatz von Tierpopulationen in Landökosys- temen. Verh. Dtsch. Zool. Ges. ( Helgoland 1971 ): 95–106.Google Scholar
  32. Funke, W. 1973. Rolle der Tiere in Wald-Ökosystemen des Solling. Pages 143–174 in H. Ellenberg, ed. Okosystemforschung. Springer, Berlin, W. Germany.Google Scholar
  33. Funke, W. 1977. Das zoologische Forschungsprogramm im Sollingprojekt. Verh. Ges. Okol. ( Göttingen 1976 ): 49–58.Google Scholar
  34. Furch, K., W.J. Junk, J. Dieterich, and N. Kochert. 1983. Seasonal variation in the major cation (Na, K, Mg and Ca) content of the water of Lago Camaleäo, an Amazonian floodplaín-lake near Manaus, Brazil. Amazoniana 8 (1): 75–89.Google Scholar
  35. Grimm, R., W. Funke, and J. Schauermann. 1975. Minimalprogramm zur Ökosystemanalyse: Untersuchungen an Tierpopulationen in Wald-Öksystemen. Verh. Ges. Okol. (Erlangen 1974 ): 77–87.Google Scholar
  36. Haffer, J. 1969. Speciation in Amazonian forest birds. Science 165: 131–137.PubMedCrossRefGoogle Scholar
  37. Haffer, J. 1982. General aspects of the refuge theory. Pages 6–24 in G.T. Prance, ed. Biological diversification in the tropics. Columbia Univ. Press, New York, NY USA.Google Scholar
  38. Irion, G. 1976. Die Entwicklung des zentral-und oberamazonischen Tieflands im Spät-Pleistonzän und im Holozän. Amazoniana 6 (1): 67–79.Google Scholar
  39. Irion, G., and J. Adis. 1979. Evolucâo de florestas amazônicas inundadas, de igapó-um exemplo do rio Tarumâ Mirím. Acta Amazonica 9 (2): 299–303.Google Scholar
  40. Irion, G., J. Adis, W. Junk, and F. Wunderlich. 1983. Sedimento-logical studies of an island in the Amazon River. Amazoniana 8 (1): 1–18.Google Scholar
  41. Irmler, U. 1975. Ecological studies of the aquatic soil invertebrates in three inundation forests of Central Amazonia. Amazoniana 5 (3): 337–409.Google Scholar
  42. Irmler, U. 1977. Inundation-forest types in the vicinity of Manaus. Biogeographica 8: 17–29.Google Scholar
  43. Irmler, U. 1979. Abundance fluctuations and habitat changes of soil beetles in Central Amazonian inundation forests (Col.: Carabidae, Staphylinidae). Stud. Neotrop. Fauna Environ. 14: 1–16.CrossRefGoogle Scholar
  44. Janetschek, H., ed. 1982. Okologische Feldmethoden. Ulmer, Stuttgart, W. Germany.Google Scholar
  45. Junk, W.J., G.M. Soares, and F.M. Carvalho. 1983. Distribution of fish species in a lake of the Amazon river floodplain near Manaus (Lago Camaleâo), with special reference to extreme oxygen conditons. Amazoniana 7 (4): 397–431.Google Scholar
  46. Katz, B. 1981. Preliminary results of leaf litter-decomposing microfungi survey. Acta Amazonica 11 (2): 410–411.Google Scholar
  47. Kempson, D., M. Lloyd, R. Ghelardi. 1963. A new extractor for woodland litter. Pedobiologia 3: 1–21.Google Scholar
  48. Klinge, H. 1973. Struktur und Artenreichtum des zentralamazonischen Regenwaldes. Amazoniana 4 (3): 283–292.Google Scholar
  49. Klinge, H. 1983. Forest structures in Amazonia. Pages 13–23 in Ecological structures and problems of Amazonia. Proc. Int. Union Conserv. Nature Nat. Resour. Workshop, Sâo Carlos, Brazil, 1982.Google Scholar
  50. Klinge, H., K. Furch, E. Harms, and J. Revilla. 1983. Foliar nutrient levels of native tree species from Central Amazonia. 1. Inundation forests. Amazoniana 8 (1): 19–45.Google Scholar
  51. Mahnert, V. 1979. Pseudoskorpione (Arachnida) aus dem Amazonasgebiet (Brasilien). Rev. Zool. 86 (3): 719–810.Google Scholar
  52. Myers, N. 1980. Conversion of tropical moist forests. Nat. Acad. Sci., Washington, DC USA.Google Scholar
  53. National Research Council. 1980. Research priorities in tropical biology. Nat. Acad. Sci., Washington, DC USA.Google Scholar
  54. Paarmann, W., U. Irmler, and J. Adis. 1982. Pentacomía egregia Chaud. (Carabidae, Cicindelidae) an univoltine species in the Amazonian inundation forest. Coleopt. Bull. 36(2):183–188.Google Scholar
  55. Penny, N.D., and J.R. Arias. 1982. Insects of an Amazon forest. Columbia Univ. Press, New York, NY USA.Google Scholar
  56. Phillipson, J., ed. 1971. Methods of study in quantitative soil ecology: Population, production and energy flow. Blackwell, Oxford, Great Britain.Google Scholar
  57. Prance, G.T. 1975. The history of the INPA capoeira based on ecological studies of Lecythidaceae. Acta Amazonica 5 (3): 261–263.Google Scholar
  58. Prance, G.T. 1979. Notes on the vegetation of Amazonia. III. The terminology of Amazonian forest types subject to inundation. Brittonia 31 (1): 26–38.CrossRefGoogle Scholar
  59. Prance, G.T. 1980. A terminologia dos tipos de florestas amazônicas sujeitas a inundacäo. Acta Amazonica 10 (3): 495–504.Google Scholar
  60. Prance, G.T., ed. 1982. Biological diversification in the tropics. Columbia Univ. Press, New York, NY USA.Google Scholar
  61. Prance, G.T., W.A. Rodrigues, and M.F. da Silva. 1976. Inventario florestal de um hectare de mata de terra firme, km 30 da Estrada Manaus-Itacoatiara. Acta Amazonica 6 (1): 9–35.Google Scholar
  62. Revilla, J.D. 1981. Aspectos florísticos e fitossociológicos da floresta inundâvel (Igap6) Praja Grande, Rio Negro, Amazonas, Brasil. M.S. Thesis, INPA, Manaus, Brazil.Google Scholar
  63. Ribeiro, M.N.G., and J. Adis. 1984, in press. Local rainfall-a bias for bioecological studies in the Central Amazon. Acta Amazonica.Google Scholar
  64. Richards, P.W. 1976. The tropical rain forest. Cambridge Univ. Press, Cambridge, Great Britain.Google Scholar
  65. Salati, E., P.I.S. Braga, and R. Figliuolo, eds. 1979. Estratégias para politica florestal na Amazônia Brasileira. Suppl. Acta Amazonica 9(4):1–216.Google Scholar
  66. Salati, E., J. Marques, and L.C.B. Molion. 1978. Origem e distribuicäo das chuvas na Amazônia. Interciencia 3: 200–206.Google Scholar
  67. Saunders, P.T., and M.J. Bazin. 1975. Stability of complex ecosystems. Nature 256: 120–121.CrossRefGoogle Scholar
  68. Schauermann, J. 1977. Untersuchungen an Tierpopulationen in den Buchenwäldern des Soiling: Die Tiere der Bodenoberfläche und des Bodens. Jahresber. Naturwiss. Ver. Wuppertal 30: 104–107.Google Scholar
  69. Schubart, H.O.R. 1977. Critérios ecológicos para o desenvolvimento agricola das terras firmes na Amazônia. Acta Amazonica 7 (4): 559–567.Google Scholar
  70. Schubart, H.O.R., and E. Salati. 1982. Natural resources for land use in the Amazon region: The natural systems. Pages 219–249 in S. Hecht, ed. Amazoniana: Agriculture and land use research. Cent. Int. Agric. Trop., Cali, Colombia.Google Scholar
  71. Sçhwerdtfeger, F. 1968. Okologie der Tiere: I I. Demökologie. P. Parey, Berlin, W. Germany.Google Scholar
  72. Simpson, B.B., and J. Haffer. 1978. Speciation patterns in the Amazonian forest biota. Annu. Rev. Ecol. Syst. 9: 497–518.CrossRefGoogle Scholar
  73. Sioli, H. 1956. Ober Natur und Mensch im brasilianischen Amazonasgebiet. Erdkunde 10 (2): 89–109.Google Scholar
  74. Sioli, H. 1968. Zur Ökologie des Amazonas-Gebietes. Pages 137–170 in E.J. Fittkau, J. Illies, H. Klinge, G.H. Schwabe, and H. Siolí, eds. Biogeography and ecology in South America, vol. I. Junk, The Hague, The Netherlands.Google Scholar
  75. Southwood, T.R.E. 1980. Ecological methods with particular references to the study of insect populations. Chapman and Hall, New York, NY USA.Google Scholar
  76. Sturm, H., A. Abouchaar, R. de Bernal, and C. de Hoyos. 1970. Distribucion de animales en las capas bajas de un bosque humedo tropical de la region Carare-Opon (Santander, Colombia)., Caldasía 10 (50): 529–578.Google Scholar
  77. Thiede, U. 1977. Untersuchungen über die Arthropodenfauna in Fichtenforsten ( Populationsökologíe, Energieumsatz). Zool. Jahrb. Syst. 104: 137–202.Google Scholar
  78. Tischler, W. 1955. Synökologie der Landtiere. G. Fischer, Stuttgart, W. Germany.Google Scholar
  79. Vanzolíni, P.E. 1973. Paleoclímates, relief and species multiplication in equatorial forests. Pages 255–258 in B.J. Meggers, E.S. Ayensu, and W.D. Duckworth, eds. Tropical forest ecosystems in Africa and South America: A comparative review. Smithson. Inst. Press, Washington, DC USA.Google Scholar
  80. Walter, H. 1970. Vegetationszonen und Klima. UTB, Ulmer, Stuttgart, W. Germany.Google Scholar
  81. Walter, H. 1973. Allegemeine Geobotanik. UTB, Ulmer, Stuttgart, W. Germany.Google Scholar
  82. Weidemann, G. 1971. Food and energy turnover of predatory arthropods of the soil surface. Ecol. Stud. 2: 110–118.CrossRefGoogle Scholar
  83. Wolda, H. 1978a. Seasonal fluctuations in rainfall, food and abundance of tropical insects. J. Anim. Ecol. 47: 369–381.CrossRefGoogle Scholar
  84. Wolda, H. 1978b. Fluctuations in abundance of tropical insects. Am. Nat. 112: 1017–1045.CrossRefGoogle Scholar
  85. Wolda, H. 1980. Seasonality of tropical insects. I. Leafhoppers ( Homoptera) in Las Cumbres, Panama. J. Anim. Ecol. 49: 277–290.CrossRefGoogle Scholar
  86. Wolda, H., and R. Foster. 1978. Zunacetha annulata (Lepidoptera; Dioptidae), an outbreak insect in a neotropical forest. Geo-Eco-Trop. 2(4):443–454.Google Scholar
  87. Worbes, M. 1983. Vegetationskundlíche Untersuchungen zweier Uberschwemmungswälder in Zentralamazonien-vorläufige Ergebnisse. Amazoniana 8 (1): 47–65.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Joachim Adis
    • 1
    • 2
  • Herbert O. R. Schubart
    • 2
  1. 1.Tropical Ecology Working GroupMax Planck Institute for LimnologyPlönWest Germany
  2. 2.Instituto Nacional de Pesquisas da Amazônia (INPA)ManausBrazil

Personalised recommendations