Aquatic Microbial Ecology—Research Questions and Opportunities

  • W. J. Wiebe
Part of the NATO Conference Series book series (NATOCS, volume 7)


In this paper, I will restrict my comments to heterotrophic microorganisms. While the marine environment will be stressed, I will try to show where the questions, concepts, and techniques are applicable to fresh waters, as well as other environments.


Coral Reef Particulate Organic Carbon Muramic Acid Term Ecological Research Aquatic Microbial Ecology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Azam, F. 1984, in press. Growth of bacteria in the ocean. In J.E. Hobbie and P.J.L. Williams, eds. Heterotrophic metabolism in the sea. Springer, New York, NY USA.Google Scholar
  2. Bae, H.C., E.H. Cota-Robles, and L.E. Casida, Jr. 1972. Microflora of soil as viewed by transmission electron microscopy. Appl. Microbiol. 23:637–648.Google Scholar
  3. Berg, G. 1977. Microbiology-detection, occurrence and removal of viruses. J. Water Pollut. Control Fed. 49:1290–1299.PubMedGoogle Scholar
  4. Berk, S.G., D.C. Brownlee, D.R. Heinle, H.J. Kling, and R.R. Colwell. 1977. Ciliates as a food source for marine planktonic copepods. Microb. Ecol. 4:27–40.Google Scholar
  5. Christian, R.R., and W.J. Wiebe. 1978. Anaerobic microbial community metabolism in Spartina alterniflora soils. Limnol. Oceanogr. 23:328–336.Google Scholar
  6. Droop, M.R. 1968. Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochoysis lutheri. J. Mar. Biol. Assoc. U.K. 48:689–733.CrossRefGoogle Scholar
  7. Edmonson, W.T., and J.T. Lehman. 1981. The effect of changes in the nutrient income on the condition of Lake Washington. Limnol. Oceanogr. 26:1–29.Google Scholar
  8. Fenchel, T. 1976. The significance of bacterivorous Protozoa in the microbial community of detrital particles. Pages 529–544 in J. Cairns, ed. Aquatic microbial communities. Garland, VA USA.Google Scholar
  9. Ferguson, R.L., and P. Rublee. 1976. Contribution of bacteria to standing crop of coastal plankton. Limnol. Oceanogr. 15:14–20.Google Scholar
  10. Haas, L.W., and K.L. Webb. 1979. Nutritional mode of several non-pigmented microflagellates from the York River Estuary, Virginia. J. Exp. Mar. Biol. Ecol. 39:125–134.CrossRefGoogle Scholar
  11. Habte, M., and M. Alexander. 1978. Protozoan density and the coexistence of protozoan predators and bacterial prey. Ecology 54:140–146.CrossRefGoogle Scholar
  12. Hodson, R.E., A.E. Maccubbin, and L.R. Pomeroy. 1981. Dissolved adenosine tri-phosphate utilization by free-living and attached bacterioplankton. Mar. Biol. 64:43–51.CrossRefGoogle Scholar
  13. Imberger, J., T. Berman, R.R. Christian, R.B. Hanson, L.R. Pomeroy, E.B. Sherr, D. Whitney, W.J. Wiebe, and R.G. Wiegert. 1983. The influence of water motion on the spatial and temporal variability of chemical and biological substances in a salt marsh estuary. Limnol. Oceanogr. 28:201–214.Google Scholar
  14. Johannes, R.E. 1968. Nutrient regeneration in lakes and oceans. Pages 203–213 in M. Droop and E.F.J. Woods, eds. Advances in marine microbiology. Academic Press, New York, NY USA.Google Scholar
  15. Johnson, P.T. 1978. Viral diseases of the blue crab, Callinectes sapidus. Mar. Fish. Rev. 40:13–15.Google Scholar
  16. LeBrasseur, R.J., C.D. McAllister, W.E. Barraclough, O.D. Kennedy, J. Manzer, D. Robinson, and K. Stephens. 1978. Enhancement of sockeye salmon (Onchorhynchus nerka) by lake fertilization in Great Central Lake: Summary report. J. Fish. Res. Board Can. 35:1580–1596.CrossRefGoogle Scholar
  17. Levinton, J.S., and G.R. Lopez. 1977. A model of renewable resources and limitation of deposit-feeding benthic populations. Oecologia 31:177–190.CrossRefGoogle Scholar
  18. Liston, J. 1957. A quantitative and qualitative study of the bacterial flora of skate and lemon sole trawled in the North Sea. Ph.D. Dissert., Univ. of Aberdeen, Aberdeen, Scotland.Google Scholar
  19. Mann, K.H. 1982. Ecology of coastal waters: A systems approach. Stud. Ecol. 8. Univ. of Calif. Press, Berkeley, CA USA.Google Scholar
  20. Moebus, K. 1980. A method for detection of bacteriophages from ocean water. Helgol. Wiss. Meeresunters. 34:1–14.CrossRefGoogle Scholar
  21. Newell, S.Y., and R.E. Hicks. 1982. Direct-count estimates of fungal and bacterial biovolume in dead leaves of smooth cordgrass (Spartina alterniflora Loisel). Estuaries 5:246–260.CrossRefGoogle Scholar
  22. Novitsky, J.A., and R.Y. Morita. 1976. Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine Vibrio. Appl. Environ. Microbiol. 32:617–622.Google Scholar
  23. Novitsky, J.A., and R.Y. Morita. 1978. Possible strategy for survival of marine bacteria under starvation conditions. Mar. Biol. 48:289–295.CrossRefGoogle Scholar
  24. Platt, T., and K.L. Denman. 1977. Organization in the pelagic ecosystem. Helgol. Wiss. Meeresunters. 30:575–581.CrossRefGoogle Scholar
  25. Pomeroy, L.R. 1974. The oceans food web, a changing paradigm. Bioscience 24:499–504.CrossRefGoogle Scholar
  26. Pomeroy, L.R. 1979. Secondary production mechanisms of continental shelf communities. Pages 163–188 in R.J. Livingston, ed. Ecological processes in coastal and marine systems. Plenum, New York, NY USA.Google Scholar
  27. Pomeroy, L.R., and D. Deibel. 1980. Aggregation of organic matter by pelagic tunicates. Limnol. Oceanogr. 25:643–652.CrossRefGoogle Scholar
  28. Provasoli, L., and I.J. Pinter. 1980. Bacteria induced polymorphism in an axenic laboratory strain of Ulva lactueo (Chlorophyceae). J. Phycol. 16:196–201.CrossRefGoogle Scholar
  29. Rhoads, D. 1974. Organic-sediment relations on the muddy sea floor. Oceanogr. Mar. Biol. Annu. Rev. 12:263–300.Google Scholar
  30. Safferman, R.S., and M.E. Rohr. 1979. The practical directory to phycovirus literature. U.S. Environ. Prot. Agency, Cincinnati, OH USA.Google Scholar
  31. Sheldon, R.W., and W.H. Sutcliffe, Jr. 1978. Generation times of 3h for Sargasso Sea microplankton determined by ATP analysis. Limnol. Oceanogr. 23:1051–1055.Google Scholar
  32. Sherr, B.F., E.B. Sherr, and T. Berman. 1982. Decomposition of organic detritus: A selective role for microflagellate Protozoa. Limnol. Oceanogr. 27:765–769.Google Scholar
  33. Sieburth, J. M. 1975. Microbial seascapes. Univ. Park Press, Baltimore, MD USA.Google Scholar
  34. Smith, S.V., W.J. Kommerer, E.A. Laws, R.E. Brock, and T.W. Walsh. 1981. Kaneoke Bay sewage diversion experiment: Perspective on ecosystem responses to nutritional perturbation. Pac. Sci. 35:279–395.Google Scholar
  35. Steeman Nielsen, E. 1952. The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons. Explor. Mer. 18:117–140.Google Scholar
  36. Stevenson, L.H. 1978. A case for bacterial dormancy in aquatic systems. Microb. Ecol. 4:127–133.CrossRefGoogle Scholar
  37. Strickland, J.D.H., and T.R. Parsons. 1962. On the production of particulate organic carbon by heterotrophic processes in sea water. Deep Sea Res. 8:211–222.Google Scholar
  38. Walters, M.R., R. Buick, and J.S.R. Dunlop. 1980. Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia. Nature 284:443–445.CrossRefGoogle Scholar
  39. Wetzel, R.L. 1977. Carbon resources of a benthic salt marsh invertebrate Nassarius absolatus soy (Mollusca:Nassariidae). Estuar. Proc. 2:293–308.Google Scholar
  40. White, D.C., R.J. Bobbie, J.S. Herron, J.S. King, and S.J. Morrison. 1979. Biochemical measurements of microbial mass and activity from environmental samples. Pages 69–81 in J.W. Costarton and R.R. Colwell, eds. Native aquatic bacteria: Enumeration, activity and ecology. Am. Soc. Test. Mater. Spec. Tech. Publ. 695.Google Scholar
  41. Wiebe, W.J., and J. Liston. 1968. Isolation and characterization of a marine bacteriophage. Mar. Biol. 1:244–249.CrossRefGoogle Scholar
  42. Wiebe, W.J., and L.R. Pomeroy. 1972. Microorganisms and their association with aggregates and detritus in the sea: A microscopic study. Mem. Ist. Ital. Idrobiol. 29:(Suppl.) 325–352.Google Scholar
  43. Wiegert, R.G., and D.F. Owen. 1971. Trophic structure, available resources and population density in terrestrial vs. aquatic ecosystems. J. Theor. Biol. 30:69–81.PubMedCrossRefGoogle Scholar
  44. Wilkinson, C.R. 1978. Microbial associations in sponges. III. Ultrastructure of the in situ associations in coral reef sponges. Mar. Biol. 49:177–185.Google Scholar
  45. Wright, R.T., and J.E. Hobble. 1965. Uptake of organic solutes by bacteria in lake water. Limnol. Oceanogr. 10:22–28.CrossRefGoogle Scholar
  46. Wright, R.T., and J.E. Hobble. 1966. Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology 47:447–468.CrossRefGoogle Scholar
  47. Zachary, A. 1974. Isolation of bacteriophages of the marine bacterium Beneckea natriegens from coastal salt marshes. Appl. Microbiol. 27:980–982.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • W. J. Wiebe
    • 1
  1. 1.Department of MicrobiologyUniversity of GeorgiaAthensUSA

Personalised recommendations