Stability and Destabilization of Central European Forest Ecosystems—A Theoretical, Data Based Approach

  • Bernhard Ulrich
Part of the NATO Conference Series book series (NATOCS, volume 7)


Based on a thermodynamic model of a forest ecosystem, stability is defined as a system in quasi-steady state. The steady state is defined by the balance between ion uptake (phytomass production) and ion mineralization (secondary production) and by the balance between input and output. In steady state, the ion cycle of the system is closed. A de-coupling (opening) of the ion cycle leads to net production or consumption of protons, which causes changes in the chemical soil environment. Resilience is defined as the ability of the system to maintain the H+ /OH balance. Several buffering mechanisms operate in soils and organisms to maintain this balance. The various buffer rates are critical in regulating system resilience. The natural climatic variation, the necessity to re-establish system elements continuously, and the biomass utilization by man lead to a de-coupling of the ion cycle and thus produce chemical stress. A sequence of ecosystem states exist: aggradation, stability with high resilience, humus disintegration, stability with low resilience, buildup of decomposer refuge, and podzolization. From the data known about rates of proton loading and proton buffering, it must be concluded that acid deposition shifts forest ecosystems from stability ranges into destablization phases (transition states), even at low rates of deposition.


Forest Ecosystem Mineral Soil Acid Deposition Cation Acid Silicate Weathering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bache, B.W. 1983. The implications of rock weathering for acid neutralization. Pages 175–187 in Ecological effects of acid deposition. Nat. Swed. Environ. Prot. Board, Rep. SnV pm 1636.Google Scholar
  2. Bauch, J., and W. Schröder. 1982. Zellulärer Nachweis einiger Elemente in den Feinwurzeln gesunder and erkrankter Tannen (Abies alba Mill.) and Fichten (Picea abies Karst.). Forstwiss. Centralbl. 101: 285–294.CrossRefGoogle Scholar
  3. Hovland, J., G. Abrahamsen, and G. Ogner. 1980. Effects of artificial acid rain on decomposition of spruce needles and on mobilisation and leaching of elements. Plant Soil 56: 365–378.CrossRefGoogle Scholar
  4. Johnson, N.M., Ch.T. Driscoll, J.S. Eaton, G.E. Likens, and W.H. McDowell. 1982. “Acid rain,” dissolved aluminum and chemical weathering at the Hubbard Brook Experimental Forest, New Hampshire. Geochim. Cosmochim. Acta 45: 1421–1437.CrossRefGoogle Scholar
  5. Killham, K., M.K. Firestone, and J.G. McColl. 1983. Acid rain and soil microbial acitivity: Effects and their mechanisms. J. Environ. Qual. 12: 133–137.CrossRefGoogle Scholar
  6. Mazzarino, M.J., H. Heínrichs, and H. Fölster. 1983. Holocene versus accelerated actual proton consumption in German forest soils. Pages 113–123 in B. Ulrich and J. Pankrath, eds. Effects of accumulation of air pollutants in forest ecosystems. Reidel, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  7. Prigogine, I. 1947. Etude Thermodynamique des Processus Irreversibles. Desoer, Liege, Belgium.Google Scholar
  8. Strayer, R.F., C.-J. Lin, and M. Alexander. 1981. Effect of simulated acid rain on nitrification and nitrogen mineralization in forest soils. J. Environ. Qual. 10: 547–551.CrossRefGoogle Scholar
  9. Tamm, C.O., and G. Wiklander. 1980. Effects of artificial acidification with sulphuric acid on tree growth in Scots Pine forest. Pages 188–189 in D. Drabls and A. Tollan, eds. Proc. Int. Conf. Ecol. Impact Acid Precip. SNSF-project, Oslo-As, Norway.Google Scholar
  10. Tischner, R., U. Kaiser, and A. Hüttermann. 1983. Untersuchungen zum Einfluß von Aluminium-Ionen auf das Wachstum von Fichtenkeimlingen in Abhängigkeit vom pH-Wert. Forstwiss. Centralbl. 102: 329–336.CrossRefGoogle Scholar
  11. Ulrich, B. 1980. Die Bedeutung von Rodung und Feuer für die Bodenund Vegetationsentwicklung in Mitteleuropa. Forstwiss. Centralbl. 99: 376–384.CrossRefGoogle Scholar
  12. Ulrich, B. 1981a. Okologische Gruppierung von Böden nach ihrem chemischen Bodenzustand. Z. Pflanzenernähr. Bodenk. 144: 289–305.CrossRefGoogle Scholar
  13. Ulrich, B. 1981b. Eine ökosystemare Hypothese über die Ursachen des Tannensterbens. Forstwiss. Centralbl. 100: 228–296.CrossRefGoogle Scholar
  14. Ulrich, B. 1981c. Theoretische Betrachtung des Ionenkreislaufs in Waldökosystemen. Z. Pflanzenernähr. Bodenk. 144: 647–659.CrossRefGoogle Scholar
  15. Ulrich, B. 1983a. A concept of forest ecosystem stability and of acid deposition as driving force for destabilization. Pages 1–29 in B. Ulrich and J. Pankrath, eds. Effects of accumulation of air pollutants in forest ecosystems. Reidel, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  16. Ulrich, B. 1983b. Soil acidity and its relations to acid deposition. Pages 127–146 in B. Ulrich and J. Pankrath, eds. Effects of accumulation of air pollutants in forest ecosystems. Reidel, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  17. Ulrich, B., R. Mayer, and P.K. Khanna. 1979. Deposition von Luftverunreinigungen und ihre Auswirkungen in Waldökosystemen im Solling. Schriftenr. Forstl. Fak. Univ. Göttingen 58, Sauerländer, Frankfurt, W. Germany.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Bernhard Ulrich
    • 1
  1. 1.Institut für Bodenkunde und WaldernährungUniversität GöttingenGöttingenGermany

Personalised recommendations