A Microelectrode for Measuring Intracellular pH1

  • P. K. Nair
  • J. I. Spande
  • W. J. Whalen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 180)


A simple and reliable method of constructing an intracellular pH microelectrode is described. Antimony is used as the pH sensor. Antimony electrodes have been used in biological systems as early as 1927 (1). Since then several investigators have used different kinds of Sb electrodes. Roos and Boton (3) describe the latest methods of construction and application of pH sensitive micro-electrodes. In most cases the pH electrodes were fabricated by pulling glass capillaries filled with molten antimony and in a few cases by coating glass with antimony. The electrodes were of the open type.


Silver Wire Standard Buffer Solution National Heart Lung Rapid Response Time Antimony Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buytendijk, F. J. J. and M. W. Voerdeman, Wilhelm Roux Arch. Entwicklungsmech. org. 112:387–410, 1927.CrossRefGoogle Scholar
  2. 2.
    Matsumura, Y., K. Kajino and M. Fujimoto. Membr. Biochem. 3:99–129, 1980.PubMedCrossRefGoogle Scholar
  3. 3.
    Roos, A. and W. F. Boron. Physiol. Rev. Vol. 61:296–434, 1981.PubMedGoogle Scholar
  4. 4.
    Nair, P., J. I. Spande and W. J. Whalen, J. Appl. Physiol. 49 (5) 916–918, 1980.PubMedGoogle Scholar
  5. 5.
    Whalen, W. J., J. Riley and P. Nair, Appl. Physiol. 23:798–801, 1967.Google Scholar
  6. 6.
    Kleinberg, I. Brit. Dent. Tour 104:197–204, 1958.Google Scholar
  7. 7.
    Catfish, C. R., L. R. Pucacoo and N. W. Carter, Int. Soc. Nephrol. Vol. 14:126–141, 1978.Google Scholar
  8. 8.
    Fujimoto, M., Y. Matsumura and N. Satake, Jap. Jo Physiol. 30:491–508.Google Scholar
  9. 9.
    Vieira, F. L. and Malnic, G., Am. J. Physiol. 214–710–718, 1968.PubMedGoogle Scholar
  10. 10.
    Satake, N., Y. Matsumura and M. Fujimoto, Jop. J. Physiol. 30:671–687, 1980.CrossRefGoogle Scholar
  11. 11.
    Brinkman, R., and F.J.J. Buytendijk, Biochem. Z. 199:387, 1928.Google Scholar
  12. 12.
    Quehenberger, P., Pflugers Arch. 368:141–147.Google Scholar
  13. 13.
    Stock, J. T., Purdy W. C., and Garcia. Chen. Rev. 58:611–626.Google Scholar
  14. 14.
    Dhalla, N. S., Y. C. Yates, I. Kleiriberg, J. C. Khatter and R. J. Hoeschen, J. Pharmacol. Meth. 3:221–234, 1979.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • P. K. Nair
    • 1
  • J. I. Spande
    • 2
  • W. J. Whalen
    • 3
  1. 1.Department of Biomedical EngineeringLouisiana Tech UniversityRustonUSA
  2. 2.Cleveland Research InstituteClevelandUSA
  3. 3.Santa FeUSA

Personalised recommendations