Regulation of Local Cerebral Blood Flow

  • N. P. Mitagvaria
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 180)


In the last decade the commonly accepted view on the regulation of cerebral blood flow (CBF) has changed considerably. This has resulted primarily from comparison data on measurement of global CSF and local CBF (1CBF) in different microareas of the brain. Today there is no doubt that regulation of CBF may be accomplished locally in close correlation with the functional-metabolic activity of individual neuron-glial populations [6,12,13]. It is therefore not surprising that, a variety of patterns of changes in local blood flow may be observed in adjacent microareas of the brain depending on the level of this activity at different functional trials (or under local influences). It is more difficult to trace such a logically clear cause-effect relationship when changes in 1CBF different in time and amplitude indices are observed in the same adjacent microareas of the brain under sytemic influences. Alteration of the systemic arterial pressure (SAP) and oxygen insufficiency may be considered as the most significant of these influences.


Cerebral Blood Flow Initial Level Metabolic Demand Dynamic Phase Cerebral Autoregulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Ayoagi, V. D. Desmukh, J. S. Meyer, Y. Kawamura, Y. Tagashira. Effect of betaadrenergic blockade with propanol on cerebral blood flow, autoregulation and CO2 responsiveness. Stroke, 1976; 7:291–295.CrossRefGoogle Scholar
  2. 2.
    T. V. Balueva, V. B. Semenjutin, S. I. Teplov. Fast component of cerebral autoregulation. Physiol. J. SSSR, 1980; 66, 9:1357–1362.Google Scholar
  3. 3.
    V. T. Begiashvili, V. G. Meladze, N. P. Mitagvaria. Analog model of myogenic autoregulation of cerebrovascular tonus. Izvestia AN GSSR, Seria Biol., 1979; 5, 4:375–384.Google Scholar
  4. 4.
    V. T. Begiashvili, V. G. Meladze, N. P. Mitagvaria. Mathematical simulation of myogenical active blood vessel. Mechanica Compozitnych Materialov, 1980; 2:331–338.Google Scholar
  5. 5.
    H. X. Bicher, D. H. Hunt, W. E. Flacke, D. F. Bruley. Autoregulatory mechanisms controlling the supply of oxygen to microareas of brain tissue. Biochemistry and Experimental Biology.Google Scholar
  6. 6.
    I. T. Demchenko. “Brain Blood Supply”, Nauka, Leningrad, 1983.Google Scholar
  7. 7.
    B. Ekstrom-Jodal, E. Haggendal, N. J. Nilsson. On the relation between blood pressure and blood flow in the cerebral cortex of dogs. Acta Physiol. Scand., 1970; Suppl. 350: 29–42.Google Scholar
  8. 8.
    J. Freeman, D. H. Ingvar. Elimination by hypoxia of cerebral blood flow autoregulation and EEG relationship. Exp. Brain Res., 1968; 5:61–71.PubMedCrossRefGoogle Scholar
  9. 9.
    A. C. Guton. “Textbook of Medical Physiology.” W. D. Saunders Company, Philadelphia, 1976; 836.Google Scholar
  10. 10.
    A. M. Harper. Autoregulation of cerebral blood flow: influence of the arterial blood pressure on the blood flow through the cerebral cortex. J. Neurol. Neurosurg. Psychiat., 1966; 29:398–403.PubMedCrossRefGoogle Scholar
  11. 11.
    H. Hirsh, K. Korner. Über die Druch-Druchblutungs-Relation der Gehirngefasse. Pflugers Arch., 1964; 280:316–325.CrossRefGoogle Scholar
  12. 12.
    D. H. Ingvar. Patterns of brain activity revealed by measurements of regional cerebral blood flow. In: “Brain Work”, Copenhagen: Munksgaard, 1975; 307–413.Google Scholar
  13. 13.
    D. H. Ingvar, H. Schwartz. Blood flow patterns induced in the dominant hemisphere by speech and reading. “Brain”, 1974; 97:274–288.CrossRefGoogle Scholar
  14. 14.
    Y. Kawamura, J. S. Meyer, H. Hiromoto, M. Aoyagi, K. Hashi. Neurogenic control of cerebral blood flow in the baboon. Effects of alpha-adrenergic blockade with phenoxybenzamine on the cerebral autoregulation and vasomotor reactivity to changes in PaCO2. Stroke, 1974; 5a:747–758.CrossRefGoogle Scholar
  15. 15.
    Y. Kawamura, J. S. Meyer, H. Hiromoto, M. Aoyagi, Y. Tagashira, E. O. Ott. Neurogenic control of cerebral blood flow in the baboon. Effects of the cholinergic inhibitory agents, atropine, on cerebral autoregulation and vasomotor reactivity to changes in PaCO2. J. Neurosurg., 1975; 43: 676–688.PubMedCrossRefGoogle Scholar
  16. 16.
    N. A. Lassen. Autoregulation of cerebral blood flow. Circul. Res., 1964; 14–15, Suppl. 1:201–204.Google Scholar
  17. 17.
    N. A. Lassen, M. S. Christensen. Physiology of cerebral blood flow. Br. J. Anaesth., 1976; 48:719–734.PubMedCrossRefGoogle Scholar
  18. 18.
    G. I. Mchedlishvili, L. S. Nicolaishvili. Evidence of a cholinergic nervous mechanisms mediating the autoregulatory dilation of the cerebral blood vessels. Pflugers Arch., 1970; 315:27–37.PubMedCrossRefGoogle Scholar
  19. 19.
    N. P. Mitagvaria, V. G. Meladze, K. D. Lataria, V. T. Begiashvili. Some aspects of microflow autoregulation in cats cerebral cortex. Bulletin of AS GSSR, 1976; 83, 3:717–720.Google Scholar
  20. 20.
    N. P. Mitagvaria, V. G. Meladze, I. A. Ognev, V. T. Begiashvili. Different responses of local blood flow in adjacent microareas of cerebral cortex. Bulletin of AS GSSR, 1978; 92, 1:169–172.Google Scholar
  21. 21.
    H. Rappaport, D. Bruce, T. W. Langfitt. The effect of lowered cardiac output on cerebral blood flow. In: “Cerebral circulation and metabolism.” Ed. by T. W. Langfitt, Springer-Verlag, NY-Heidelberg-Berlin, 1975;14–17.CrossRefGoogle Scholar
  22. 22.
    K. Stosseck, D. W. Lubbers, N. Cottin. Determination of local blood flow (microflow) by electrochemically generated hydrogen. Construction and application of the measuring probe. Pflugers Arch., 1974; 348:225–238.PubMedCrossRefGoogle Scholar
  23. 23.
    K. Tada. A study on cerebral blood flow autoregulation. Med. J. Osaka Univ., 1978; 28:321–327.PubMedGoogle Scholar
  24. 24.
    K. Yoshida, J. S. Meyer, K. Sacamoto, J. Honda. Autoregulation of cerebral blood flow. Electromagnetic flow measurements during acute hypertension in the monkey. Cirul. Res., 1966; 19, 4:726–738.CrossRefGoogle Scholar
  25. 25.
    B. B. Zelikson. Particularitis of cerebral blood flow autoregulation during alteration of arterial pressure. Physiol. J. SSSR, 1973; 59, 4:613–620.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • N. P. Mitagvaria
    • 1
  1. 1.Laboratory of Metabolic Maintenance of the Brain Functions I. S. Beritashvili Institute of PhysiologyGeorgian Academy of SciencesTbilisiGeorgia

Personalised recommendations