Advertisement

Dopamine Effects on the Oxygenation of Human Skeletal Muscle

  • W. Fleckenstein
  • K. Reinhart
  • T. Kersting
  • R. Dennhardt
  • A. Jasper
  • Ch. Weiss
  • K. Eyrich
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 180)

Abstract

In intensive care dopamine and related substances are used in the prophylaxis and therapy of circulatory shock of varying origin (1, 2). The effect of low doses of dopamine (3 µg/kg × min) on urine production is well documented (3, 4, 5). Different doses up to 10 µg/kg × min have been administered to increase cardiac output (6, 7, 8).

Keywords

Intensive Care Patient Muscle Blood Flow Circulatory Shock Organ Blood Flow Dopamine Infusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MacCannell, K. L., McNay, J. L., Meyer, M. B. and Goldberg, L. I., Dopamine in the treatment of hypot ension and shock, The New England Journal of Medicine, Vol. 275, No. 25; 1389–1398 (1966)PubMedCrossRefGoogle Scholar
  2. 2.
    Francis, G. S., Sharma, B, and Hodges, M., Comparative hemodynamic effects of dopamine and dobutamine in patients with acute cardiogenic circulatory collapse, Am. Heart J., 103 (6): 995–999 (1982)PubMedCrossRefGoogle Scholar
  3. 3.
    Goldberg, L. I., Volkmann, P. H., Kohli, J. D. and Kotake, A. N., Similarities and differences of dopamine receptors in the renal vascular bed and elsewhere, Adv. in Biomedical Psychopharmacology Vol. 16: 251–256 (1977)Google Scholar
  4. 4.
    Randohr, B., Biamino, G. and Schroeder, R., Vergleichende Untersuchungen Über die Wirkung von Dopamin und Orciprenalin am gesunde Menschen: Muskeldurchblutung, Nierendurchblutung, Nierenfunktion, Klin. Wschr. 50: 149–157 (1972)CrossRefGoogle Scholar
  5. 5.
    Schmidt, M. and Imbs, J. L., Pharmacological characterization of renal vascular dopamine receptors, Journ. of Cardiovascular Pharmacology 2: 595–605 (1980)CrossRefGoogle Scholar
  6. 6.
    Loeb, H. S., Winslow, E. B. J., Rahimtoola, S. H., Rosen K. M. and Gunnar, R. M., Acute hemodynamic effects of dopamine in patients with shock, Circulation Vol. 24: 163–173 (1971)CrossRefGoogle Scholar
  7. 7.
    Brandi, M., Pasch, T., Kamp, H.-D. and Grimm, J., Comparision of the effects of dopamine and dobutamine during continous positive-pressure ventilation, Intensive Care Med. 9: 61–67 (1983)CrossRefGoogle Scholar
  8. 8.
    Goldberg, L.I., Dopamine — Clinical uses of an endogenous catecholamine, The New England Journal of Medicine October 3: 707–710 (1974)CrossRefGoogle Scholar
  9. 9.
    Bell, C. and Stubbs, A., Localization of vasodilator dopamine receptors in the canine hindlimbs, Br. J. Pharmacology 64: 253–257 (1978)CrossRefGoogle Scholar
  10. 10.
    Brodde, O.-E., Meyer, F.-J., Schemuth, W. and Freistühler, J., Demonstration of spezific vascular dopamine receptors mediating vasodilation of the isolated rabbit mesenteric artery, Naunyn-Schmiedeberg’s Arch. Pharmacol. 316: 24–30 (1981)CrossRefGoogle Scholar
  11. 11.
    Willens, J. L. and Bogeart, M. G., Dopamine-induced neurogenic vasodilation in isolated perfused muscle preparation of the dog, Naunyn-Schmiedeberg’s Arch. Pharmacol. 286: 413–428 (1975)CrossRefGoogle Scholar
  12. 12.
    Jackson, L. K., Key, B. M. and Cain, S. M., Total hindlimb O2 uptake and blood flow in hypoxic dogs given dopamine, Critical Care Med. Vol. 10, No. 5: 327–331 (1982)CrossRefGoogle Scholar
  13. 13.
    Schröder, W. and Rathscheck, W., Investigation of the influence of acetylcholine on the distribution of capillary flow in the skeletal muscle of the guinea pig by recording of the pO2 in the muscle tissue, Pflügers Arch. Vol. 345: 335–346 (1973)CrossRefGoogle Scholar
  14. 14.
    Hauss, J., Schönleben, K., Spiegel, H.-U. and Bünte, H., Therapiekontrolle in der Intensivbehandlung durch kontinuierliche Gewebe-pO2-Messung in “Messung des Gewebesauerstoffdruckes bei Patienten”, G. Witzstock (ed), A. M. Ehrly, Baden-Baden, New York (1981).Google Scholar
  15. 15.
    Fleckenstein, W. and Weiss, Ch.. Evaluation of pO2-histograms obtained by hypodermic needle electrodes, Proceedings World Congress On Medical Physics and Biomedical Engineering (1982)Google Scholar
  16. 16.
    Fleckenstein, W. and Weiss, Ch. A comparison of pO2-histograms from rabbit hindlimb muscles obtained by simultaneous measurements with hypodermic needle electrodes and with surface electrodes, Sixth Int. Soc. of Oxygen Transport to Tissue Meeting 1982. In Press: Adv. Exp. Med. Biol.Google Scholar
  17. 17.
    Fleckenstein, W., Heinrich, R., Grauer, TO., Schomerus, H., Doelle, W. and Weiss, Ch., Fast local regulations of muscle pO2-fields in patients suffering from cirrhosis of the liver, see proceedings of this meeting (1983)Google Scholar
  18. 18.
    Schröder, W., Die Messung des Sauerstoffdruckes in der Skelettmuskulatur — eine quantitative Methode zur Kontrolle der Sauerstoffversorgung und der Funktion der terminalen Muskelstrombahn, Herz/Kreislauf Vol. 10, No. 3: 146–153 (1978)Google Scholar
  19. 19.
    Kessler, M., Lebenserhaltende Mechanismen bei Sauerstoffmangel und bei Störungen der Organdurchblutung, Mitteilung Max-Plank-Gesellschaft: 444–463 (1974).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • W. Fleckenstein
    • 1
    • 2
  • K. Reinhart
    • 1
    • 2
  • T. Kersting
    • 1
    • 2
  • R. Dennhardt
    • 1
    • 2
  • A. Jasper
    • 1
    • 2
  • Ch. Weiss
    • 1
    • 2
  • K. Eyrich
    • 1
    • 2
  1. 1.Institut für PhysiologieMedizinische Hochschule LübeckLübeckGermany
  2. 2.Institut für AnaesthesiologieUniversitäts-Klinikum-SteglitzBerlinGermany

Personalised recommendations