Advertisement

Analysis of Tissue Reflection Spectra Obtained from Brain or Heart, Using the Two Flux Theory for Non-Constant Light Scattering

  • J. Hoffmann
  • U. Heinrich
  • H. R. Ahmad
  • D. W. Lübbers
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 180)

Abstract

Natural pigments such as hemoglobin, myoglobin, and the cytochromes have characteristic absorption spectra. Spectrophotometry methods are useful tools to observe in vivo changes in oxygen saturation respectively oxidation. The measured reflection, which is the ratio of the reflected light intensity to the incident beam intensity, is a function of both absorption and scattering coefficient of the sample. If the reflection spectra is compared to its true absorption spectra, the scattering coefficient affects a deformation of the true absorption spectra. If the scattering coefficient is constant (i.e. the scattering coefficient does not depend on the wavelength), this deformation results in a non-linear scaling to the absorption spectra. But if the scattering coefficient is wavelength-dependent, this one-to-one transformation will be disturbed, and the deformation of the absorption spectra shows in addition an absorption and scattering dependent wavelength-shift to the spectra.

Keywords

Reflection Spectrum Basic Component Natural Pigment Error Weight Multicomponent Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heinrich, U., 1981, Untersuchungen zur quantitativen photometrischen Analyse der Redox-Zustände der Atmungskette in vitro und in vivo am Beispiel des Gehirns, Dissertation, Ruhr-Universität Bochum.Google Scholar
  2. Heinrich, U., Hoffmann, J., Lübbers, D.W., and Hannebauer, F., 1981, Quantitative analysis of reflection spectra by simulating experiments on tissue, Adv. Physiol. Sci., 25:35–36.Google Scholar
  3. Hoffmann, J., Wodick, R., Hannebauer, F., and Lübbers, D.W., 1982, Quantitative analysis of reflection spectra of the surface of the guinea pig brain, in: “Oxygen Transport to Tissue V”, D.W. Lübbers, H. Acker, T.K. Goldstick, E. Leniger-Follert, eds., Plenum Press, New York, in print.Google Scholar
  4. Kortüm, G., 1969, “Reflexionsspektroskopie”, Springer, Berlin-Heidelberg-New York.Google Scholar
  5. Kubelka, K., and Munk, F., 1931, Ein Beitrag zur Optik der Farbanstr iche, Z. Techn. Phys., 11a: 593–603.Google Scholar
  6. Lawson, Ch.L., and Hanson, R.J. 1974, “Solving least squares problems”, Englewood Cliffs, New York, Prentice-Hall.Google Scholar
  7. Lübbers, D.W., and Niesel, W., 1957, Ein Kurzzeit-Spektralanalysator zur Registrierung rasch verlaufender Änderung der Absorption, Naturwissenschaften, 4:59–60.CrossRefGoogle Scholar
  8. Lübbers, D.W., and Hoffmann, H., 1981, Absolute reflection photometry at organ surfaces, Adv. Physiol. Sci., 8:353–361.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. Hoffmann
    • 1
  • U. Heinrich
    • 1
  • H. R. Ahmad
    • 1
  • D. W. Lübbers
    • 1
  1. 1.Max-Planck-Institut für SystemphysiologieDortmund 1Germany

Personalised recommendations