An Evaluation of Easton’s Paradigm for the Oxyhemoglobin Equilibrium Curve

  • Donald G. Buerk
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 180)


A new paradigm for the oxyhemoglobin equilibrium curve proposed by Easton (1979) has been fit to human and dog blood saturation data by a simple linear regression algorithm. The equation derived from Easton’s paradigm is characterized by only two parameters, and can fit saturation data between 0 and 95% with a root mean square error less than 0.5%. The upper 5% of the curve is not adequately described. Easton’s equation is more accurate than the empirical Hill (1910) equation and approaches the accuracy of the more complicated Adair (1925) equation in this range.


Oxygen Partial Pressure Saturation Curve Saturation Data Hill Equation Full Saturation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adair, G.S., 1925, J. Biol. Chem., 63:529.Google Scholar
  2. Easton, D.M., 1979, J. Theor. Biol., 76:335.PubMedCrossRefGoogle Scholar
  3. Fell, D.A., 1979, Math. Biosci.. 46:59.CrossRefGoogle Scholar
  4. Gompertz, B., 1825, Phil. Trans. Roy, Soc. (London). 513.Google Scholar
  5. Hill, A.V., 1910, J. Physiol. (London). 40:iv.Google Scholar
  6. O’Riordan, J.F. and Goldstick, T.K., 1983, pp. 435–444, In: “Oxygen Transport to Tissue — IV, Advances in Experimental Medicine and Biology (Vol. 159),” Plenum Press, N.Y.CrossRefGoogle Scholar
  7. Pollard, J.H., 1977, Chapter 15, “Numerical and Statistical Techniques,” Cambridge University Press, England.CrossRefGoogle Scholar
  8. Reeves, R.B., Park, J.S., Lapennas, G.N. and Olszowka, A.J., 1982, J. Appl. Physiol., 53:87.PubMedGoogle Scholar
  9. Reich, J.G. and Zinke, I., 1974, Studia Biophysica, 43:91.Google Scholar
  10. Roughton, F.J.W., DeLand, E.C., Kernohan, J.C. and Severinghaus, J.W., 1972, pp. 73–83, In: “Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status,” Academic Press, N.Y.Google Scholar
  11. Severinghaus, J.W., 1966, J. Appl. Physiol., 21:1108.PubMedGoogle Scholar
  12. Severinghaus, J.W., 1979, J. Appl. Physiol., 46:599.PubMedGoogle Scholar
  13. Winslow, R.M., Swenberg, M., Berger, R.L., Shrager, R.I., Luzzana, M., Samaja, M. and Rossi-Bernardi, L., 1977, J. Biol. Chem., 252:2331.PubMedGoogle Scholar
  14. Winslow, R.M., Morrissey, J.M., Berger, R.L., Smith, P.D. and Gibson, C.C., 1978, J. Appl. Physiol., 45:289.PubMedGoogle Scholar
  15. Winslow, R.M., Samaja, M., Winslow, N.J., Rossi-Bernardi, L. and Shrager, R.I., 1983, J. Appl. Physiol., 54:524.PubMedCrossRefGoogle Scholar
  16. Zander, R., 1981, pp. 331–332, In: “Advances in Physiological Sciences (Vol. 25). Oxygen Transport to Tissue,” Akademiai Kiado, Hungary.Google Scholar
  17. Zwart, A., Kwant, G., Oeseburg, B. and Zijlstra, W.G., 1982, Clin. Chem., 28:1287.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Donald G. Buerk
    • 1
  1. 1.Department of Biomedical EngineeringLouisiana Tech UniversityRustonUSA

Personalised recommendations