Advertisement

Noradrenergic Modulation of Cerebral Cortical Oxidative Metabolism

  • Joseph C. LaManna
  • Sami I. Harik
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 180)

Abstract

The delivery of oxygen and glucose to the cerebral cortex is tightly matched to energy demand under a wide variety of physiologic and probably under some pathophysiologic conditions. The maintenance of this relationship must involve the ability to detect changes in metabolic requirements and to modify the delivery of oxygen and substrates through a delicate control of cerebral blood flow (CBF). Furthermore, since many physiologic and pathophysiologic conditions cause only regional alterations in cerebral metabolic activity, tight matching of supply and demand will have to act at a local, regional or global level.

Keywords

Cerebral Blood Flow Locus Ceruleus Direct Electrical Stimulation Cerebral Microvessels Ipsilateral Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amaral, D. G. and Sinnamon, H. M., 1977, The locus ceruleus: Neurobiology of a central noradrenergic nucleus. Prog. Neurobiol., 9:147.PubMedCrossRefGoogle Scholar
  2. Aston-Jones, G. and Bloom, F. E., 1981a, Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neurosci., 1:876.PubMedGoogle Scholar
  3. Aston-Jones, G. and Bloom, F. E., 1981b, Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J. Neurosci., 1:887.PubMedGoogle Scholar
  4. Branston, N. M., Symon, L., Strong, A. J. and Hope, D. T., 1978, Measurements of regional cortical blood flow during changes in extracellular potassium activity evoked by direct cortical stimulation in the primate. Exp. Neurol., 59:243.PubMedCrossRefGoogle Scholar
  5. Busto, R., Ginsberg, M. D., Harik, S. I. and Smith, D. W., Local cerebral blood flow during bicuculline-induced status epilepticus: Insensitivity to hemispheral norepinephrine depletion. In: “Cerebral Blood Flow, Metabolism and Epilepsy,” M. Baldy-Moulinier, ed., John Libbey Eurotext, publisher, Montrouge France, In press.Google Scholar
  6. Chance, B. and Williams, G. R., 1956, The respiratory chain and oxidative phosphorylation. Adv. Enzymol., 17:65.Google Scholar
  7. Foote, S. L., Bloom, F. E. and Aston-Jones, G., 1983, Nucleus locus ceruleus: New evidence of anatomical and physiological specificity. Physiol. Rev., 63:844.PubMedGoogle Scholar
  8. Harik, S. I., Busto, R. and Martinez, E., 1982, Norepinephrine regulation of cerebral glycogen utilization during seizures and ischemia. J . Neurosci., 2:409.PubMedGoogle Scholar
  9. Harik, S. I., Duckrow, R. B., LaManna, J. C., Rosenthal, M., Sharma, V. K. and Banerjee, S. P., 1981, Cerebral compensation for chronic noradrenergic denervation induced by locus ceruleus lesion: Recovery of receptor binding, isoproterenol-induced adenylate cyclase activity and oxidative metabolism. J. Neurosci., 1:641.PubMedGoogle Scholar
  10. Harik, S. I., LaManna, J. C., Light, A. I. and Rosenthal, M., 1979, Cerebral norepinephrine: Influence on cortical oxidative metabolism in situ. Science, 206:69.PubMedCrossRefGoogle Scholar
  11. Harik, S. I., Sharma, V. K., Wetherbee, J. R., Warren, R. H. and Banerjee, S. P., 1981, Adrenergic and cholinergic receptors of cerebral microvessels. J. Cereb. Blood Flow Metab., 1:329.PubMedCrossRefGoogle Scholar
  12. Harik, S. I., Sharma, V. K., Wetherbee, J. R., Warren, R. H. and Banerjee, S. P., 1980, Adrenergic receptors of cerebral microvessels. Eur. J. Pharmacol., 61:207.PubMedCrossRefGoogle Scholar
  13. Heineman, U. and Lux, H. D., 1975, Undershoots following stimulus-induced rises of extracellular potassium concentration in cerebral cortex of cat. Brain Res., 93:63.CrossRefGoogle Scholar
  14. Ingvar, M., Lindvall, O., Folbergrova, J. and Siesjö, B. K., 1983, Influence of lesions of the noradrenergic locus coeruleus system on the cerebral metabolic response to bicuculline-induced seizures. Brain. Research., 264:225.PubMedCrossRefGoogle Scholar
  15. Kobayashi, R. M., Palkovits, M., Jacobowitz, D. M. and Kopin, I. J., 1975, Biochemical mapping of the noradrenergic projection from the locus ceruleus. Neurology, 25:223.PubMedCrossRefGoogle Scholar
  16. LaManna, J. C., Harik, S. I., Light, A. I. and Rosenthal, M., 1981, Norepinephrine depletion alters cerebral oxidative metabolism in the “active” state. Brain Res., 204:87.PubMedCrossRefGoogle Scholar
  17. Lewis, D. V. and Schuette, W. H., 1975, NADH fluorescence and [K+]o changes during hippocampal electrical stimulation. J. Neurophysiol., 38:405.PubMedGoogle Scholar
  18. Lewis, D. V. and Schuette, W. H., 1976, NADH fluorescence, [K+]o and oxygen consumption in cat cerebral cortex during direct cortical stimulation. Brain Res., 110:523.PubMedCrossRefGoogle Scholar
  19. Lothman, E., LaManna, J., Cordingley, G., Rosenthal, M. and Somjen, G., 1975, Responses of electrical potential, potassium levels, and oxidative metabolic activity of the cerebral neocortex of cats. Brain Res., 88:15.PubMedCrossRefGoogle Scholar
  20. Sick, T. J., Hertz, L., LaManna, J. C., Rosenthal, M., Flaggman, A. and Harik, S. I., 1982, Does endogenous norepinephrine regulate potassium homeostasis and metabolism in rat cerebral cortex?. J. Cereb. Blood Flow Metab., 2:355.PubMedCrossRefGoogle Scholar
  21. Somjen, G. G., 1979, Extracellular potassium in the mammalian central nervous system. Ann. Rev. Physiol., 41:159.CrossRefGoogle Scholar
  22. Ungerstedt, U., 1971, Stereotaxic mapping of monoamine pathways in the rat brain. Acta Physiol. Scan. Suppl., 367:1.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Joseph C. LaManna
    • 1
  • Sami I. Harik
    • 1
  1. 1.Departments of Neurology, Physiology and PharmacologyCase Western Reserve University School of MedicineClevelandUSA

Personalised recommendations