Tissue Oxygenation in Normal and Edematous Brain Cortex During Arterial Hypocapnia

  • J. Grote
  • K. Zimmer
  • R. Schubert
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 180)


Since arterial hypocapnia causes a cerebral blood flow decrease, hypocapnic conditions are induced in patients with severe traumatic brain injury by controlled hyperventilation in order to reduce the intracranial pressure (Gordon, 1971). Beneficial effects on the clinical course of patients, however, can be observed only under conditions of moderate hypocapnia. As shown by animal experiments severe arterial hypocapnia results in insufficient oxygen supply conditions in brain tissue (Grote et al., 1981), which subsequently influences the brain metabolism (Granholm et al., 1969, 1971) and counteracts the influence of hypocapnia on cerebral blood flow regulation (Grote et al., 1981). The present experiments were performed to study the effects of a stepwise decrease in PaCO2 on rCBF, tissue PO2 and tissue metabolism in the brain cortex after afflicting a local brain edema.


Cerebral Blood Flow Control Area Brain Cortex Severe Traumatic Brain Injury Regional Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Elliot, K.A., Jasper, H. (1949). Am. J. Physiol. 157: 122–129Google Scholar
  2. Frei, H.J., Wallenfang, T., Poll, W., Reulen, H.J., Schubert, R., Brock, M. (1973). Acta Neurochir. 29: 15–28PubMedCrossRefGoogle Scholar
  3. Gordon, E. (1971). In: Brain and blood flow (R.W. Ross Russel, ed.). Pitman, London, pp. 281–284Google Scholar
  4. Granholm, L., Siesjö, B.K. (1969). Acta Physiol. Scand. 75: 257–266PubMedCrossRefGoogle Scholar
  5. Granholm, L., Lukjanova, L., Siesjö, B.K. (1969). Acta Physiol. Scand. 77: 179–190PubMedCrossRefGoogle Scholar
  6. Granholm, L., Siesjö, B. K. (1971). Acta Physiol. Scand. 81: 307–314PubMedCrossRefGoogle Scholar
  7. Grote, J., Reulen, H.J., Schubert, R. (1978). Adv. Neurol. 20: 333–339PubMedGoogle Scholar
  8. Grote, J., Zimmer, K., Schubert, R. (1981). Pflügers Arch. 391: 195–199PubMedCrossRefGoogle Scholar
  9. Grote, J., Schubert, R. (1982). In: Oxygen transport to human tissues (J.A. Loeppky, M.L. Riedesel, eds.). Elsevier North Holland, New York, Amsterdam, Oxford, pp.169–178Google Scholar
  10. Hutten, H., Brock, M. (1969). In: Cerebral blood flow, clinical and experimental results (M. Brock, C. Fieschi, D.H. Ingvar, N.A. Lassen, K. Schürmann, eds.). Springer, Berlin, Heidelberg, New York, pp. 19–23CrossRefGoogle Scholar
  11. Kessler, M., Grunewald, W. (1969). Progr. Resp. Res. 3: 147–152Google Scholar
  12. Lübbers, D.W., Baumgärt1, H., Fabel, H., Huch, A., Kessler, M., Kunze, K., Riemann, H., Seiler, D., Schuchardt, S. (1969). Progr. Resp. Res. 3: 136–146Google Scholar
  13. Schmiedek, P., Baethmann, A., Sippel, G., Oettinger, W., Enzenbach, R., Marguth, F., Brendel, W. (1974). J. Neurosurg. 40: 251–264PubMedGoogle Scholar
  14. Zierler, K.L. (1965). Circ. Res. 16: 309–321PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. Grote
    • 1
  • K. Zimmer
    • 1
  • R. Schubert
    • 2
  1. 1.Department of Physiology IUniversity of BonnBonnGermany
  2. 2.Department of NeurosurgeryUniversity of MainzMainzGermany

Personalised recommendations