SCE and Cell Cycle Studies in Leukemia

  • R. Becher
  • C. G. Schmidt
  • A. A. Sandberg


During recent years an increasing number of papers has been published on sister chromatid exchanges (SCEs) in neoplasia. These papers can be divided roughly into 2 major groups, i.e., SCEs in the circulating lymphocytes of cancer patients or their relatives and SCEs in affected cells. A considerable number of authors have investigated SCEs in phytohemagglutinin (PHA)-stimulated lymphocytes of cancer patients, which is comprehensively discussed by Sandberg et al. (1). Here, we want to report on SCE frequencies and cell cycle-specific patterns of the leukemic cells themselves. As SCE induction is a sensitive parameter of DNA damage, the available data have to be carefully interpreted regarding the effects of previous cytostatic treatment and the length of the therapy-free interval before samples are collected.


Acute Myelocytic Leukemia Acute Leukemia Sister Chromatid Exchange Normal Bone Marrow Cell Cycle Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sandberg, A.A., R. Becher, and Z. Gibas (1984) Value and sig nificance of SCE in human leukemia and cancer. In Sister Chro matid Exchange: 25 Years of Experimental Research, R.R. Tice and A. Hollaender, eds. Plenum Press, New York.Google Scholar
  2. 2.
    Ray, J.H., and J. German (1981) The chromosome changes in Bloom’s syndrome, ataxia-telangiectasia and Fanconi’s anemia. In Genes, Chromosomes and Neoplasia, F.E. Arrighi, P.N. Rao, and E. Stubblefield, eds. Raven Press, New York.Google Scholar
  3. 3.
    Preisler, H.D., and A. Raza (1982) Chronic myelocytic leukemia: Comments on new approaches to therapy. Cancer Treat. Rep. 66:1073–1076.PubMedGoogle Scholar
  4. 4.
    Becher, R., and A.A. Sandberg (1983) Sister chromatid exchange in the centromere and centromeric area. Human Genet. 63:358–361.CrossRefGoogle Scholar
  5. 5.
    Tice, R., J. Chaillet, and E.L. Schneider (1975) Evidence derived from sister chromatid exchanges of restricted rejoining of chromatid subunits. Nature (Lond.) 256:642–644.PubMedCrossRefGoogle Scholar
  6. 6.
    Becher, R., and C.G. Schmidt (1982) Sister chromatid differentiation and cell-cycle-specific patterns in chronic myelocytic leukemia and normal bone marrow. Int. J. Cancer 29:617–620.PubMedCrossRefGoogle Scholar
  7. 7.
    Becher, R., and A.A. Sandberg (1984) Sister chromatid exchange levels and cell cycle time in human bone marrow cells and lymphocytes. Cancer Genet. Cytogenet. 11:19–23.PubMedCrossRefGoogle Scholar
  8. 8.
    Becher, R., C.G. Schmidt, G. Theis, and D.K. Hossfeld (1979) The rate of sister chromatid exchanges in normal human bone marrow cells. Human Genet. 50:213–216.CrossRefGoogle Scholar
  9. 9.
    Becher, R., C.G. Schmidt, G. Theis, and D.K. Hossfeld (1979) Sister chromatid exchange in Ph1 -positive chronic myelocytic leukemia. Int. J. Cancer 24:713–716.PubMedCrossRefGoogle Scholar
  10. 10.
    Becher, R., G. Zimmer, and C.G. Schmidt (1981) Sister chromatid exchange and growth kinetics in untreated acute leukemia. Int. J. Cancer 27:199–204.PubMedCrossRefGoogle Scholar
  11. 11.
    Knuutila, S., E. Helminen, P. Vuopio, and A. de la Chapelle (1978) Sister chromatid exchanges in human bone marrow cells. Hereditas 88:189–196.PubMedCrossRefGoogle Scholar
  12. 12.
    Abe, S., S. Kakati, and A.A. Sandberg (1979) Growth rate and sister chromatid exchange (SCE) incidence of bone marrow cells in acute myeloblastic leukemia (AML). Cancer Genet. Cytogenet.1:115–130.CrossRefGoogle Scholar
  13. 13.
    Honeycombe, J.R. (1981) Spontaneous and busulph an induced sister chromatid exchange (SCE) frequencies in haematologically normal human bone marrow and lymphocytes. Mutat. Res. 84:399–407.PubMedCrossRefGoogle Scholar
  14. 14.
    Stoll, C., F. Oberling, and M.-P. Roth (1982) Sister chromatid exchange and growth kinetics in chronic myeloid leukemia. Cancer Res. 42:3240–3243.PubMedGoogle Scholar
  15. 15.
    Becher, R. (unpublished data).Google Scholar
  16. 16.
    Crossen, P.E. (1982) SCE in lymphocytes. In Sister Chromatid Exchange, A.A. Sandberg, ed. Alan R. Liss, Inc., New York, pp. 175–193.Google Scholar
  17. 17.
    Sandberg, A.A. (1980) The cytogenetics of chronic myelocytic leukemia (CML): Chronic phase and blastic crisis. Cancer Genet. Cytogenet. 1:217–228.CrossRefGoogle Scholar
  18. 18.
    Kakati, S., S. Abe, and A.A. Sandberg (1978) Sister chromatid exchange in Philadelphia chromosome (Ph1)-positive leukemia. Cancer Res. 38:2918–2921.PubMedGoogle Scholar
  19. 19.
    Abe, S., S. Kakati, and A.A. Sandberg (1980) Growth pattern and SCE incidence in Ph1-positive cells of CML. Cytobios 28:137–149.PubMedGoogle Scholar
  20. 20.
    Honeycombe, J.R. (1981) The cytogenetic effects of busulphan therapy on the Ph1-positive cells and lymphocytes from patients with chronic myeloid leukemia. Mutat. Res. 81:81–102.CrossRefGoogle Scholar
  21. 21.
    Becher, R. (unpublished data).Google Scholar
  22. 22.
    Sandberg, A.A. (1980) The Chromosomes in Human Cancer and Leukemia. Elsevier North-Holland, Inc., New York.Google Scholar
  23. 23.
    Becher, R. (1984) Chromosomale Befunde und Ch emotherapieresis-tenz. Regensburger Symposium, 9–11, June, 1983, Bd. 18. Contributions to Oncology, Vol. 18. Kasper, Basel, München, Paris, London, New York, Tokyo, Sydney (in press).Google Scholar
  24. 24.
    Sandberg, A.A. (1983) Chromosomes in human neoplasia. In Cur rent Problems in Cancer, R.C. Hickey, ed. Vol. 8, No. 2, pp. 1–52. Year Book Medical Publishers, Inc., Chicago-London.Google Scholar
  25. 25.
    Abe, S., and A.A. Sandberg (1980) Sister chromatid exchange and growth kinetics of marrow cells in aneuploid acute nonlym-phocytic leukemias. Cancer Res. 40:1292–1299.PubMedGoogle Scholar
  26. 26.
    Heerema, N.A., C.G. Palmer, and R.L. Baehner (1982) Elevated sister chromatid exchange and cell cycle analysis in bone marrow in childhood ALL. Cancer Genet. Cytogenet. 6:323–330.PubMedCrossRefGoogle Scholar
  27. 27.
    Abe, S., and A.A. Sandberg (1980) Growth pattern and sister chromatid exchanges of bone marrow cells in acute lymphoblastic leukemia. Cytobios 29:165–173.PubMedGoogle Scholar
  28. 28.
    Cairns, J. (1975) Mutation selection and the natural history of cancer. Nature (Lond.) 255:197–200.PubMedCrossRefGoogle Scholar
  29. 29.
    Becher, R. (unpublished data).Google Scholar
  30. 30.
    Drew, R.M., and R.B. Painter (1959) Action of tritiated thymidine on the clonal growth of mammalian cells. Radiat. Res. 11:535–544.PubMedCrossRefGoogle Scholar
  31. 31.
    Cleaver, J.E. (1967) Thymidine Metabolism and Cell Kinetics. Frontiers of Biology, Vol. 6, A. Neuberger and E.L. Tatum, eds. North-Holland, Amsterdam. Wiley Interscience Division, New York.Google Scholar
  32. 32.
    Ehmann, U.K., J.R. Williams, W.A. Nagle, J.A. Brown, J.A. Belli, and J.T. Lett (1975) Perturbations in cell cycle pro gression from radioactive DNA precursors. Nature (Lond.) 258: 633–636.CrossRefGoogle Scholar
  33. 33.
    Marz, R. J.M. Zylka, P.G.W. Plagemann, J. Erbe, R. Howard, and J.R. Sheppard (1976) G2 + M arrest of cultured mammalian cells after incorporation of tritium labeled nucleosides. J. Cell. Physiol. 90:1–8.CrossRefGoogle Scholar
  34. 34.
    Pollack, A., C.B. Bagwell, and G.L. Irvin (1979) Radiation from tritiated thymidine perturbs the cell cycle progression of stimulated lymphocytes. Science 203:1025–1027.PubMedCrossRefGoogle Scholar
  35. 35.
    Morimoto, K., and S. Wolff (1980) Cell cycle kinetics in human lymphocyte cultures. Nature (Lond.) 288:604–606.PubMedCrossRefGoogle Scholar
  36. 36.
    Tice, R., E.L. Schneider, and J.M. Rary (1976) The utilization of bromodeoxyuridine incorporation into DNA for the analysis of cellular kinetics. Exp. Cell Res. 102:232–236.PubMedCrossRefGoogle Scholar
  37. 37.
    Schneider, E.L., H. Sternberg, and R.R. Tice (1977) In vivoanalysis of cellular replication. Proc. Natl. Acad. Sci., USA74:2041–2044.PubMedCrossRefGoogle Scholar
  38. 38.
    Bender, M.A., and D.M. Prescott (1962) DNA synthesis and mitosis in cultures of human peripheral leukocytes. Exp. Cell Res.27:221–229.PubMedCrossRefGoogle Scholar
  39. 39.
    Michalowsky, A. (1963) Time course of DNA synthesis in human leukocyte cultures. Exp. Cell Res. 32:609–612.CrossRefGoogle Scholar
  40. 40.
    Cooper, E.H., and P. Barkhan (1963) Observations on the proliferation of human leukocytes cultured with phytohaemagglutinin. Brit. J. Haemat. 9:101–111.PubMedCrossRefGoogle Scholar
  41. 41.
    Crossen, P.E., and W.F. Morgan (1977) Analysis of human lymphocyte cell cycle time in culture measured by sister chromatid differential staining. Exp. Cell Res. 104:453–457.PubMedCrossRefGoogle Scholar
  42. 42.
    Santesson, B., K. Lindahl-Kiessling, and A. Mattsson (1979) SCE in B and T lymphocytes. Possible implications for Bloom’s syndrome. Clin. Genet. 16:133–135.PubMedCrossRefGoogle Scholar
  43. 43.
    Cronkite, E.P., and P.C. Vincent (1970) Granulocytopoiesis. In Symposium on Hemopoietic Cellular Proliferation, Boston, Nov. 5–6, 1969, F. Stohlman, Jr., ed. Grune&Stratton, New York, pp. 211–228.Google Scholar
  44. 44.
    Boll, I.T., and G. Fuchs (1970) A kinetic model of granulo-cytopoiesis. Exp. Cell Res. 61:147–152.PubMedCrossRefGoogle Scholar
  45. 45.
    Dörmer, P. (1973) Kinetics of erythropoietic cell proliferation in normal and anemic man. A new approach using quantitative 14C-autoradiograph y. In Progress in Histochemistry and Cyto chemistry, W. Graumann, Z. Lojda, A.G.E. Pearse, and T.H. Sch iebler, eds. Fischer, Stuttgart, Vol. 6, No. 1, pp. 1–83.Google Scholar
  46. 46.
    Killmann, S.A., E.P. Cronkite, J.S. Robertson, T.M. Fliedner, and V.P. Bond (1963) Estimation of phases of the life cycle of leukemic cells from labeling human beings In vivo with tritiated thymidine. Lab Invest. 12:671–684.PubMedGoogle Scholar
  47. 47.
    Ogawa, M., J. Fried, Y. Sakai, A. Strife, and B.D. Clarkson (1970) Studies of cellular proliferation in human leukemia. VI. The proliferative activity, generation time, and emergence time of neutrophilic granulocytes in chronic granulocytic leukemia. Cancer 25:1031–1049.PubMedCrossRefGoogle Scholar
  48. 48.
    Gavosto, F. (1974) Granulopoiesis and cell kinetics in chronic myeloid leukemia. Cell Tissue Kinet. 7:151–163.PubMedGoogle Scholar
  49. 49.
    Vincent, P.C. (1974) Cell kinetics of the leukemias. In Leu kemia, F. Gunz and A.G. Baikie, eds. Grune&Stratton, New York, 3rd ed., pp. 189–221.Google Scholar
  50. 50.
    Becher, R. (unpublished data).Google Scholar
  51. 51.
    Kato, H. (1977) Mechanisms for sister chromatid exchanges and their relations to the production of chromosomal aberrations. C h romosoma 59:179–191.Google Scholar
  52. 52.
    Wolff, S. (1977) Sister chromatid exchange. Ann. Rev. Genet.11:183–201.PubMedCrossRefGoogle Scholar
  53. 53.
    Gibas, Z., and J. Limon (1979) The induction of sister-chromatid exchanges by 9-aminoacridine derivatives. I. The relation between the yield of SCE induction and cell kinetics in cultured human lymphocytes. Mutat. Res. 67:93–96.PubMedCrossRefGoogle Scholar
  54. 54.
    Giulotto, E., A. Mottura, R. Giogi, L. De Carli, and F. Nuzzo (1980) Frequencies of sister chromatid exchanges in relation to cell kinetics in lymphocyte cultures. Mutat. Res. 70:343–350.PubMedCrossRefGoogle Scholar
  55. 55.
    Yunis, J.J., C.D. Bloomfield, and K. Ensrud (1981) All patients with acute nonlymphocytic leukemia may have a chromosomal defect. New Engl. J. Med. 305:135–139.PubMedCrossRefGoogle Scholar
  56. 56.
    Becher, R., G. Zimmer, C.G. Schmidt, and A.A. Sandberg (1983) Sister chromatid exchange and proliferation pattern after ultrasound exposure in vivo. Am. J. Human Genet. 35:932–937.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • R. Becher
    • 1
    • 2
  • C. G. Schmidt
    • 1
  • A. A. Sandberg
    • 2
  1. 1.Westdeutsches TumorzentrumInnere Universitätsklinik (Tumorforschung)Essen 1Federal Republic of Germany
  2. 2.Roswell Park Memorial InstituteBuffaloUSA

Personalised recommendations