Skip to main content

Value and Significance of SCE in Human Leukemia and Cancer

  • Chapter
Sister Chromatid Exchanges

Abstract

The introduction and refinement of sister chromatid exchange (SCE) techniques generated much enthusiasm, interest, and promise for their application in human neoplasia. In particular, the demonstration of high SCE levels in the cells of Bloom syndrome (BS) patients (1,2), a condition with a very high susceptibility to the development of cancer (primarily lymphoma or leukemia), and the application of SCE as a sensitive and specific index of carcinogenic and/or mutagenic activity (3,4), generated much excitement for the application of SCE studies in human neoplasia. It was hoped that unique changes, akin to those at the chromosome level, would characterize certain malignant conditions and states (5–7). Thus, the general concept was developed that individuals or families with high risk of cancer might show SCE changes characteristic of these groups and that cells involved in certain neoplastic conditions would display unique SCE patterns different from those of normal cells and allow for differential delineation of some neoplastic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chaganti, R.S.K., S. Schonberg, and J. German (1974) A mani fold increase in sister chromatid exchanges in Bloom’s syndrome lymphocytes. Proc. Natl. Acad. Sci., USA 71:4508–4512.

    Article  PubMed  CAS  Google Scholar 

  2. Shiraishi, Y., A.I. Freeman, and A.A. Sandberg (1976) Increased sister chromatid exchange in bone marrow and blood from Bloom’s syndrome. Cytogent. Cell Genet. 17:163–173.

    Google Scholar 

  3. Perry, P., and H.J. Evans (1975) Cytological detection of mutagen-carcinogen exposure to sister chromatid exchange. Nature 258:121–125.

    Article  PubMed  CAS  Google Scholar 

  4. Abe, S., and M. Sasaki (1982) SCE as an index of mutagenesis and/or carcinogenesis. In Sister Chromatid Exchange, A.A. Sandberg, ed. Alan R. Liss, Inc., New York, pp. 461–514.

    Google Scholar 

  5. Sandberg, A.A. (1980) Some comments on sister chromatid exchange (SCE) in human neoplasia. Cancer Genet. Cytogenet.1:197–206.

    Article  Google Scholar 

  6. Shiraishi, Y., and A.A. Sandberg (1980) Sister chromatid exchange in human chromosomes, including observations in neoplasia. Cancer Genet. Cytogenet. 1:363–380.

    Article  Google Scholar 

  7. Sandberg, A.A. (1982) Sister chromatid exchange in human states. In Sister Chromatid Exchange, A.A. Sandberg, ed. Alan R. Liss, Inc., New York, pp. 619–651.

    Google Scholar 

  8. Kurvink, K., C.D. Bloomfield, K.M. Keenan, S. Levitt, and J. Cervenka (1978). Sister chromatid exchange in lymphocytes from patients with malignant lymphoma. Human Genet. 44:137–144.

    Article  CAS  Google Scholar 

  9. Otter, M., C.G. Palmer, and R.L. Baehner (1979). Sister chromatid exchange in lymphocytes from patients with acute lymphoblastic leukemia. Human Genet. 52:185–192.

    CAS  Google Scholar 

  10. Mitra, A.B., V.V.V.S. Murty, and U.K. Luthra (1982) Sister chromatid exchanges in leukocytes of patients with cancer of cervix uteri. Human Genet. 60:214–215.

    Article  CAS  Google Scholar 

  11. Ghidoni, A., E. Privitera, E. Raimondi, D. Rovini, M.T. Illeni, and N. Cascinelli (1983) Malignant melanoma: Sister chromatid exchange analysis in three families. Cancer Genet. Cytogenet. 9:347–354.

    Article  PubMed  CAS  Google Scholar 

  12. Livingston, G.K., L.A. Cannon, D.T. Bishop, P. Johnson, and R.M. Fineman (1983) Sister chromatid exchange: Variation by age, sex, smoking, and breast cancer status. Cancer Genet. Cytogenet. 9:289–299.

    Article  PubMed  CAS  Google Scholar 

  13. Singh, J., G.R. Malik, A.K. Malhotra, and I.C. Verma (1984) Increased sister chromatid exchanges in the bone marrow in multiple myeloma. Int. J . Cancer (in press).

    Google Scholar 

  14. Hollander, D.H., M.S. Tockman, Y.W. Liang, D.S. Borgaonkar, and J.K. Frost (1978) Sister chromatid exchanges in the peri pheral blood of cigarette smokers and in lung cancer patients; and the effect of chemotherapy. Human Genet. 44: 165–171.

    Article  CAS  Google Scholar 

  15. Hopkin, J.M., and H.J. Evans (1980) Cigarette smoke-induced DNA damage and lung cancer risks. Nature (Lond.) 283:388–390.

    Article  CAS  Google Scholar 

  16. Cheng, W.-S., J.J. Mulvihill, M.H. Greene, L.W. Pickle, S. Tsai, and J. Whang-Peng (1979) Sister chromatid exchanges and chromosomes in chronic myelogenous leukemia and cancer families. Int. J. Cancer 23:8–13.

    Article  PubMed  CAS  Google Scholar 

  17. McDonald, M.A., and P .H. Fitzgerald (1979) Sister chromatid exchange and cell cycle progression in cultured lymphocytes from patients with chronic lymphatic leukemia. J. Natl. Cancer Inst. 62:1169–1171.

    PubMed  CAS  Google Scholar 

  18. Husum, B., H.C. Wulf, and E. Niebuhr (1981) Sister-chromatid exchanges in lymphocytes in women with cancer of the breast. Mutat. Res. 85:357–362.

    Article  PubMed  CAS  Google Scholar 

  19. Crossen, P.E., P.H. Fitzgerald, and B.M. Colls (1981) Normal sister chromatid exchange and cell cycle progression in cultured lymphocytes from patients with malignant lymphoma. J. Natl. Cancer Inst. 67:821–824.

    PubMed  CAS  Google Scholar 

  20. Barnabei, V.M., K. Sakamoto, J.K. Seeley, and D.T. Purtilo (1982) Chromosomal breakage and sister chromatid exchange in peripheral blood lymphocytes and lymphoblastoid cell lines in the X-linked lymphoproliferative syndrome. Cancer Genet. Cytogenet. 6:313–321.

    Article  PubMed  CAS  Google Scholar 

  21. Bazopoulou-Kyrkanidou, E., A.P. Angelopoulos, J. Garas, and F. Zervou-Valvi (1983) Lymphocyte reactivity in patients with cancer of the oral cavity measured by sister chromatid differential staining. Cancer Genet. Cytogenet. 10:43–49.

    Article  PubMed  CAS  Google Scholar 

  22. Takabayashi, T., M.S. Lin, and M.G. Wilson (1983) Sister chromatid exchanges and chromosome aberrations in fibroblasts from patients with retinoblastoma. Human Genet. 63:317–319.

    Article  CAS  Google Scholar 

  23. Knight, L.A., H.A. Gardner, and B.L. Gallie (1983) Normal rates of sister chromatid exchange in lymphocytes from retinoblastoma patients. J. Clin. Hematol. Oncol. 13:73–80.

    Google Scholar 

  24. Adhvaryu, S.G., R.C. Vyas, B.J. Dave, A.H. Trivedi, and B.N. Parikh (1984) Spontaneous and induced sister chromatid exchange frequencies and cell cycle progression in lympho cytes of patients with carcinoma of uterine cervix. Cancer Genet. Cytogenet. (in press).

    Google Scholar 

  25. Larripa, I., M.L. de Vinuesa, I. Slavutsky, and S.B. de Salum (1984) Sister chromatid exchanges in leukemic patients.Cancer Genet. Cytogenet. (in press).

    Google Scholar 

  26. Der-Sarkissian, H., C. Bonaiti-Pellie, M.-L. Briard-Guilleraot, and J.-M. Zucker (1982) Sister chromatid exchanges in patients with retinoblastoma. Cancer Genet. Cytogenet. 7: 73–77.

    Article  PubMed  CAS  Google Scholar 

  27. Schonwald, A.D., C.R. Bartram, and H.W. Rudiger (1977) Benzpyrene-induced sister chromatid exchanges in lymphocytes of patients with lung cancer. Human Genet. 36:261–264.

    Article  CAS  Google Scholar 

  28. Rudiger, H.W., W. Harder, P. Maack, F.-V. Kohl, and U. Sch midt-Preuss (1981) Decreased rate of benzo(a)pyrene-induced sister chromatid exchange in fibroblast cultures from patients with lung cancer. J. Cancer Res. Clin. Oncol. 102: 169–175.

    Article  PubMed  CAS  Google Scholar 

  29. Weiss, S.J., M.B. Lampert, and S.T. Test (1983) Long-lived oxidants generated by human neutrophils: Characterization and bioactivity. Science 222:625–628.

    Article  PubMed  CAS  Google Scholar 

  30. Weitberg, A.B., S.A. Weitzman, M. Destrempes, S.A. Latt, and T.P. Stossel (1983) Stimulated human phagocytes produce cytogenetic changes in cultured mammalian cells. New Eng. J. Med. 308:26–30.

    Article  PubMed  CAS  Google Scholar 

  31. Heidemann, A., B. Schmalenberger, and H. Zankl (1984) SCE-frequency and lymphocyte proliferation in a Down-syndrome-mosaic developing an acute lymphoblastic leukemia. Cancer Genet. Cytogenet. (in press).

    Google Scholar 

  32. Kakati, S., S. Abe, and A.A. Sandberg (1978) Sister chromatid exchange in Philadelphia chromosome (Ph1)-positive leukemia. Cancer Res. 38:2918–2921.

    PubMed  CAS  Google Scholar 

  33. Bech er, R., C.G. Schmidt, G. Theis, and D.K. Hossfeld (1979) Sister chromatid exchange in Ph1-positive chronic myelocytic leukemia. Int. J. Cancer 24:713–716.

    Article  PubMed  CAS  Google Scholar 

  34. Abe, S., S. Kakati, and A.A. Sandberg (1980) Growth pattern and SCE incidence in Ph1-positive cells of CML. Cytobios 28:137–149.

    PubMed  CAS  Google Scholar 

  35. Stoll, C, F. Oberling, and M.-P. Roth (1982) Sister chromatid exchange and growth kinetics in chronic myeloid leukemia.Cancer Res. 42:3240–3243.

    PubMed  CAS  Google Scholar 

  36. Abe, S., S. Kakati, and A.A. Sandberg (1979) Growth rate and sister chromatid exchange (SCE) incidence of bone marrow cells in acute myeloblastic leukemia (AML). Cancer Genet. Cytogenet. 1:115–130.

    Article  Google Scholar 

  37. Abe, S., and A.A. Sandberg (1980) Sister chromatid exchange and growth kinetics of marrow cells in aneuploid acute non-lymphocytic leukemias. Cancer Res. 40:1292–1299.

    PubMed  CAS  Google Scholar 

  38. Becher, R., G. Zimmer, and C.G. Schmidt (1981) Sister chromatid exchange and growth kinetics in untreated acute leukemia. Int. J. Cancer 27:199–204.

    Article  PubMed  CAS  Google Scholar 

  39. Heerema, N.A., C.G. Palmer, and R.L. Baehner (1982) Elevated sister chromatid exchange and cell cycle analysis in bone marrow in childhood ALL. Cancer Genet. Cytogenet. 6:323–330.

    Article  PubMed  CAS  Google Scholar 

  40. Fonatsch, C., M. Schaadt, and V. Diehl (1979) Sister chromatid exchange in cell lines from malignant lymphomas (lymphoma lines). Human Genet. 52:107–118.

    Article  CAS  Google Scholar 

  41. Fonatsch, C., M. Schaadt, H. Kirchner, and V. Diehl (1980) A possible correlation between the degree of karyotype aberrations and the rate of sister chromatid exchanges in lymphoma lines. Int. J. Cancer 26:749–756.

    Article  PubMed  CAS  Google Scholar 

  42. Fonatsch, C., H.H. Kirchner, M. Schaadt, M. Gunzel, and V. Diehl (1981) Sister chromatid exchange in lymphoma lines and lymphoblastoid cell lines before and after heterotransplantation into nude mice. Int. J. Cancer 28:441–445.

    Article  PubMed  CAS  Google Scholar 

  43. Reisbach, G., E. Gebhart, and R. Cailleau (1982) Sister chromatid exchanges and proliferation kinetics of human metastatic breast tumor cell lines. Anticancer Res. 2:257–260.

    PubMed  CAS  Google Scholar 

  44. Li, S., W.W. Au, R.L. Schmoyer, Jr., and T.C. Hsu (1982) Baseline and mitomycin-C induced sister chromatid exchanges in a melanoma and a colon tumor cell line. Cancer Genet. Cytogenet. 6:243–248.

    Article  PubMed  CAS  Google Scholar 

  45. Chen, T.R. (1981) Frequencies of sister chromatid exchanges in heteroploid cell lines of human melanoma origin. J. Natl. Cancer Inst. 66:273–277.

    PubMed  CAS  Google Scholar 

  46. Gibas, Z., R. Becher, and A.A. Sandberg (1983) Chromosomes and causation of human cancer and leukemia. LIII. Comprehensive cytogenetic analysis of an erythroleukemia. Cancer Genet. Cytogenet. 10:241–253.

    Article  PubMed  CAS  Google Scholar 

  47. Carbone, P., G. Barbata, G. Granata, G. Margiotta, and F. Caronia (1981) Sister chromatid exchange distribution in bone marrow cell chromosomes from patients with refractory anemia. Acta Haematol. 65:177–182.

    Article  PubMed  CAS  Google Scholar 

  48. Abe, S., and A.A. Sandberg (1980) Growth pattern and sister chromatid exchanges of bone marrow cells in acute lymphoblastic leukemia. Cytobios 29:165–173.

    PubMed  CAS  Google Scholar 

  49. Inoue, S., L. Brown, Y. Ravindranath, and M.J. Ottenbreit (1982) Normal sister chromatid exchange frequency in long-term survivors with acute leukemia. Cancer Res. 42:2906–2908.

    PubMed  CAS  Google Scholar 

  50. Sandberg, A.A. (1983) Chromosomes and carcinogenesis: Public health application. In Biology of Cancer (2), 13th International Cancer Congress, Part C, Alan R. Liss, Inc., New York, pp. 295–309.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Sandberg, A.A., Becher, R., Gibas, Z. (1984). Value and Significance of SCE in Human Leukemia and Cancer. In: Tice, R.R., Hollaender, A., Lambert, B., Morimoto, K., Wilson, C.M. (eds) Sister Chromatid Exchanges. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4892-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4892-4_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4894-8

  • Online ISBN: 978-1-4684-4892-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics