Human Health Situation and Chromosome Alterations: Sister Chromatid Exchange Frequency in Lymphocytes from Passive Smokers and Patients with Hereditary Diseases

  • Kanehisa Morimoto
  • Kunihiko Miura
  • Tetsuya Kaneko
  • Kumiko Iijima
  • Mayumi Sato
  • Akira Koizumi


Many investigators have described strong correlations between the frequency of sister chromatid exchanges (SCEs) in blood lympho cytes and health situations of the blood donor. Recent studies have further shown that cigarette smoking as well as certain genetic factors, can potentiate the cellular response to chemical treatment. The chemical stress method might thus be a sensitive test for quan-titating the cellular damage or defects that have been induced environmentally and genetically.


Fanconi Anemia Sister Chromatid Exchange Chromosome Alteration Familial Polyposis Coli Cell Cycle Kinetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DeMarini, D.M. (1983) Genotoxicity of tobacco smoke and tobacco smoke condensate. Mutat. Res. 114:59–89.PubMedCrossRefGoogle Scholar
  2. 2.
    Meiying, C., X. Jiujin, and Z. Xianting (1982) Comparative studies on spontaneous and mitomycin C-induced sister-chromatid exchanges in smokers and nonsmokers. Mutat. Res. 105:195–200.CrossRefGoogle Scholar
  3. 3.
    Obe, G., H.-J. Vogt, S. Madle, A. Fahning, and W.D. Heller (1982) Double-blind study on the effect of cigarette smoking on the chromosomes of human peripheral blood lymphocytes in vivo. Mutat. Res. 92:309–319.PubMedCrossRefGoogle Scholar
  4. 4.
    Livingston, G.K., and R.M. Fineman (1983) Correlation of human lymphocyte SCE frequency with smoking history. Mutat. Res119:59–64.PubMedCrossRefGoogle Scholar
  5. 5.
    Hirayama, T. (1981) Non-smoking wives of heavy smokers have a higher risk of lung cancer: A study from Japan. Br. Med. J282:183–185.CrossRefGoogle Scholar
  6. 6.
    Trichopoulos, D., A. Kalandidi, L. Sparros, and B. MacMahon (1981) Lung cancer and passive smoking. Int. J. Cancer 27:1–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Fanconi, G. (1927) Familiäre infantile perniziosaartige Anämie (perniziöses Blutbild und Konstitution). Jahrb. Kind. 117:257–281.Google Scholar
  8. 8.
    Schroeder, T.M. (1966) Cytogenetischer Befund und Ätiologie bei Fanconi-Anämie: Ein Fall von Fanconi-Anämie ohne Hexokinasede-fekt. Humangenetik 3:76–81.PubMedCrossRefGoogle Scholar
  9. 9.
    Sasaki, M.S., and A. Tonomura (1973) A high susceptibility of Fanconi’s anemia to chromosome breakage by DNA cross-linking agents. Cancer Res. 33:1829–1836.PubMedGoogle Scholar
  10. 10.
    Novotnå, B., P. Goetz, and N.I. Surkova (1979) Effects of alkylating agents on lymphocytes from controls and from patients with Fanconi’s anemia. Human Genet. 49:41–50.Google Scholar
  11. 11.
    Latt, S.A., G. Stetten, L.A. Juergens, G.R. Buchanan, and P.S. Gerald (1975) Induction by alkylating agents of sister chromatid exchanges and chromatid breaks in Fanconi’s anemia. Proc. Natl. Acad. Sci., USA 72:4066–4070.PubMedCrossRefGoogle Scholar
  12. 12.
    Cervenka, J., D. Arthur, and C. Yasis (1981) Mitomycin C test for diagnostic differentiation of idiopathic aplastic anemia and Fanconi anemia. Pediatrics 67:119–127.PubMedGoogle Scholar
  13. 13.
    Bergener, M., and F.K. Jungklaas (1970) Genetische Befunde bei Morbus Alzheimer und seniler Demenz. Gerontol. Clin. 12:71–75.CrossRefGoogle Scholar
  14. 14.
    Chase, G.A., M.F. Folstein, J.C.S. Breitner, T.H. Beaty, and S.G. Self (1983) The use of life tables and survival analysis in testing genetic hypotheses, with application to Alzheimer’s disease. Am. J. Epidem. 117:590–597.Google Scholar
  15. 15.
    Jarvik, L.F. (1967) Senescence and chromosomal changes. Lancet1:114.Google Scholar
  16. 16.
    Mattevi, M.S., and F.M. Salzano (1975) Senescence and human chromosome changes. Humangenetik 27:1–8.PubMedGoogle Scholar
  17. 17.
    Bowman, P.D., R.L. Meek, and C.W. Daniel (1976) Decreased unscheduled DNA synthesis in nondividing aged WI-48 cells. Mech. Aging Dev. 5:251.PubMedCrossRefGoogle Scholar
  18. 18.
    Schneider, E.L., and R.E. Monticone (1978) Aging and sister chromatid exchange II. The effect of the in vitro passage level of human fetal lung fibroblasts on baseline and mutagen-induced sister chromatid exchange frequencies. Exp. Cell Res. 115:269–276.PubMedCrossRefGoogle Scholar
  19. 19.
    Lípkin, M., S.J., Winawer, and P. Sherlock (1981) Early identification of individuals at increased risk for cancer of the large intestine Part I: Definition of high risk populations. Clin. Bui. 11:13–21.Google Scholar
  20. 20.
    Miyaki, M., N. Akamatsu, M. Rokutanda, T. Ono, H. Yoshikura, M.S. Sasaki, A. Tonomura, and J. Utsunomiya (1980) Increased sensitivity of skin fibroblasts from patients with adenomatosis coli and Peutz-Jegher’s syndrome to transformation by murine sarcoma virus. Gann 71:797–803.PubMedGoogle Scholar
  21. 21.
    Miyaki, M., N. Akamatsu, T. Ono, A. Tonomura, and J. Utsunomiya (1982) Morphologic transformation and chromosomal changes induced by chemical carcinogens in skin fibroblasts from patients with familial adenomatosis coli. J. Natl. Cancer Inst. 68:563–571.PubMedGoogle Scholar
  22. 22.
    Barfknecht, T.R., and Little, J.B. (1982) Abnormal sensitivity of skin fibroblasts from Familial polyposis patients to DNA alkylating agents. Cancer Res. 2:1249–1254.Google Scholar
  23. 23.
    Hori, T., M. Murata, and J. Utsunomiya (1980) Chromosome aberrations induced by N-methyl-N’-nitro-N-nitrosoguanidine in cultured skin fibroblasts from patients with Adenomatosis coli. Gann 71:628–636.PubMedGoogle Scholar
  24. 24.
    Perry, P., H.J., Evans (1975) Cytological detection of mutagen-carcinogen exposure by sister chromatid exchange. Nature(Lond.) 258:121–125.PubMedCrossRefGoogle Scholar
  25. 25.
    Tice, R., E.L. Schneider, and J.M. Rary (1976) The utilization of bromodeoxyuridine incorporation into DNA for the analysis of cellular kinetics. Exp. Cell Res. 102:232–236.PubMedCrossRefGoogle Scholar
  26. 26.
    Morimoto, K., and S. Wolff (1980) Increase of sister chromatid exchanges and perturbations of cell division kinetics in human lymphocytes by benzene metabolites. Cancer Res. 40:1189–1193.PubMedGoogle Scholar
  27. 27.
    Goto, K., S. Maeda, Y. Kano, and T. Sugiyama (1978) Factors involved in differential Giemsa-staining of sister chromatids. Chromosoma 66:351–359.PubMedCrossRefGoogle Scholar
  28. 28.
    Morimoto, K., and S. Wolff (1980) Cell cycle kinetics in human lymphocyte cultures. Nature (Lond.) 288:604–606.PubMedCrossRefGoogle Scholar
  29. 29.
    Iter, V.N., W. Szybalski (1964) Mitomycins and Profiromycin: Chemical mechanism of activation and cross-linking of DNA. Science 145:55–58.CrossRefGoogle Scholar
  30. 30.
    German, J., R. Archibald, and D. Bloom (1965) Chromosomal breakage in a rare and probably genetically determined syndrome of man. Science 148:506–507.PubMedCrossRefGoogle Scholar
  31. 31.
    Sasaki, M.S. (1978) DNA Repair Mechanisms, P.C. Hanawalt, E.C. Friedberg, and C.F. Fox, eds. Academic Press, New York, pp. 285–313.Google Scholar
  32. 32.
    Kano, H., and Y. Fujiwara (1981) Roles of DNA interstrand crosslinking and its repair in the induction in Fanconi’s ane mia cells. Mutat. Res. 81:365–375.PubMedCrossRefGoogle Scholar
  33. 33.
    Sasaki, M.S. (1975) Is Fanconi’s anemia defective in a process essential to the repair of DNA cross links? Nature (Lond.) 257:501–503.PubMedCrossRefGoogle Scholar
  34. 34.
    Dutrillaux, B., and A.M. Fosse (1976) Utilisation du BrdU dans 1’étude du cellulaire de sujets normaux et anormaux. Ann. Genet. (Paris) 19:95–102.PubMedGoogle Scholar
  35. 35.
    Dutrillaux, B., A. Aurias, A.-M. Dutrillaux, D. Buriot, and M. Prieur (1982) The cell cycle of lymphocytes in Fanconi anemia. Human Genet. 62:327–332.CrossRefGoogle Scholar
  36. 36.
    Galavazi, G., H. Schenk, D. Bootsma (1966) Synchronization of mammalian cells in vitro by inhibition of the DNA synthesis I. Optimal conditions. Exp. Cell Res. 41:428–437.PubMedCrossRefGoogle Scholar
  37. 37.
    Elmore, E., and M. Swift (1975) Growth of cultured cells from patients with Fanconi anemia. J. Cell Physiol. 87:229–234.PubMedCrossRefGoogle Scholar
  38. 38.
    Shoyab, M., M. Gunnell, and A. Lubiniecki (1981) Reduced uptake and incorporation of 3H-thymidine in Fanconi anemia fibroblasts. Human Genet. 57:296–299.CrossRefGoogle Scholar
  39. 39.
    Joenje, H., F. Arwert, A.W. Eriksson, H. Konnig, and A.B Oostra (1981) Oxygen-dependence of chromosomal aberrations in Fanconi anemia. Nature (Lond.) 290:142–143.PubMedCrossRefGoogle Scholar
  40. 40.
    Sugimura, T., K. Okabe, and M. Nagao (1966) The metabolism of 4-nitroquinoline-l-oxide, a carcinogen III. An enzyme catalyzing the conversion of 4-nitroquinoline-l-oxide to 4-hydroxy-aminoquinoline-1-oxide in rat liver and hepatomas. Cancer Res26:1717–1721.PubMedGoogle Scholar
  41. 41.
    Tada, M., and M. Tada (1975) Seryl-tRNA synthetase and activation of the carcinogen 4-nitroquinoline-l-oxide. Nature(Lond.) 255:510–512.PubMedCrossRefGoogle Scholar
  42. 42.
    Little, J.B., J. Nove, and R. Weichselbaum (1980) Abnormal sensitivity of diploid skin fibroblasts from a family with Gardner’s syndrome to the lethal effects of X-irradiation, ultraviolet light and mitomycin-C. Mutat. Res. 70:241–250.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Kanehisa Morimoto
    • 1
  • Kunihiko Miura
    • 1
  • Tetsuya Kaneko
    • 1
  • Kumiko Iijima
    • 1
  • Mayumi Sato
    • 1
  • Akira Koizumi
    • 1
  1. 1.Department of Public Health Faculty of MedicineUniversity of TokyoTokyo 113Japan

Personalised recommendations