Skip to main content

Complementation Studies in Murine/Human Hybrids Suggest Multiple Etiology for Increased Rate of Sister Chromatid Exchange in Mammalian Cells

  • Chapter
Sister Chromatid Exchanges

Summary

Two mutational changes which occurred in culture and are associated with a high rate of sister chromatid exchange (SCE) pʼnenotype have been identified in the L-A9 murine cell genome by means of complementation studies with somatic cell hybrids. Preliminary cyto-genetical evidence suggests that the retention of human autosome 6 (namely the region comprised between Xql2 and Xqter) or human autosome 19 is required in the hybrid metaphases for complementation to occur, independently of their being derived from normal human or Bloom syndrome (BS) cells. These data and other complementation studies previously reported by our group and by other investigators suggest that mammalian cells may possess several independent systems involved in the control of SCEs during chromatid replication. Thus, the high rate of SCE can be regarded as the common phenotype resulting from a variety of qualitative or quantitative changes affecting the mammalian cell genome. Bloom syndrome is evidently an example of homozygosity for a recessive mutation occurring in nature. The high SCE mutants found among rodent cells (as those seen in unstable rodent-human hybrid cells) are more likely the result of chromosomal loss or rearrangement occurring in culture at one or more of the genetic systems hypothesized above. The occurrence of complementation within or between the species barrier, following cell hybridization or cocultivation, indicates the recessive nature of the corresponding mutations and the possible homology of the relevant genetic systems in different mammalian species.

The Isolation of rodent clonal cell lines with a stable high rate of SCEs and the production of somatic cell hybrids between them and BS cells offer a promising experimental tool for studying the biology of SCEs in general and the genetics of BS in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Siniscalco, M. (1979) Human gene mapping and cancer biology. In Genetics and Human Biology: Possibilities and Realities, R. Porter, ed. Ciba Foundation Symposium, Lond. North Holland Publishing Co., Amsterdam/New York, pp. 283–309.

    Google Scholar 

  2. Alhadeff, B., M. Velivasakis, I. Pagan-Charry, W.C. Wright, and M. Siniscalco (1980) High rate of sister chromatid exchanges of Bloom’s syndrome chromosomes is corrected in rodent human somatic cell hybrids. Cytogenet. Cell Genet. 27:8–23.

    Article  PubMed  CAS  Google Scholar 

  3. Littlefield, J.W. (1964) Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants. Science 145:709–710.

    Article  PubMed  CAS  Google Scholar 

  4. Sanford, K.K., W.R. Earle, and G.D. Likely (1948) The growth in vitro of single isolated tissue cells. J. Nat. Cancer Inst. 9:229–246.

    PubMed  CAS  Google Scholar 

  5. Earle, W.R. (1943) Production of malignancy in vitro. IV. The mouse fibroblast cultures and changes seen in the living cells. J. Nat. Cancer Inst. 4:165–212.

    CAS  Google Scholar 

  6. Cox, R.P., M.R.Krauss, M.E. Balis, and J. Dancis (1974) Mouse fibroblasts Ag are deficient in HGPRT and APRT. Am. J. Human Genet. 26:272–273.

    Google Scholar 

  7. Olsen, A.S., O.W. McBride, and D.E. Moore (1981) Number and size of human X chromosome fragments transferred to mouse cells by chromosome-mediated gene transfer. Mol. & Cell Biol. 1:439–448.

    CAS  Google Scholar 

  8. Klebe, R.J., T. Chen, and F.H. Ruddle (1971) Mapping of a human genetic regulator element by somatic cell genetic analysis. Proc. Natl. Acad. Sci., USA 66:1220–1227.

    Article  Google Scholar 

  9. Felluga, B., A. Claude, and E. Mrena (1969) Electron microscope observations on virus particles associated with a transplant able renal adenocarcinoma in Balb mice. J. Nat. Cancer Inst. 43:319–333.

    PubMed  CAS  Google Scholar 

  10. Szybalski, W., and E. Szybalska (1962) Drug sensitivity as a genetic marker for human cell lines. Univ. Mich. Med. Bull. 28:277–293.

    PubMed  CAS  Google Scholar 

  11. Chopan, M. and L. Kopelovich (1981) The suppression of tumor-igenicity in human X mouse cell hybrids. I. Derivation of hybrid clones, chromosome analysis and turmorigenicity studies. Exp. Cell Biol. 49(2):78–89.

    PubMed  CAS  Google Scholar 

  12. Optiz, J., P.D. Pallister, and F.H. Ruddle (1973) An (X;14) translocation, balanced, 46 chromosomes. Repository identification No. GM 73. Cytogenet. Cell Genet. 12:289–290.

    Article  Google Scholar 

  13. Punnett, H.H., M.L. Kistermacher, A.E. Greene, and L.L. Coriell (1974) An (X;l) translocation, balanced, 46 chromosomes. Repository identification No. GM 97. Cytogenet. Cell Genet. 13:406–407.

    Article  PubMed  CAS  Google Scholar 

  14. Seravalli, E., P. de Bona, M. Velivasakis, I. Pagan-Charry, A. Hershberg, and M. Siniscalco (1976). Further data on the cytologic mapping of the human X-chromosome with man-mouse cell hybrids. In Baltimore Conference (1975): Third International Workshop on Human Gene Mapping. Birth Defects: Original Article Series. Vol. 12 No. 7, The National Foundation, New York, pp. 219–222.

    Google Scholar 

  15. Bauch, W., B. Hellkuhl, and K.-H. Grzeschik (1978) Regional assignment of the gene for human ß-glucuronidase by the use of human-mouse cell hybrids. Cytogenet. Cell Genet. 22:434–436.

    Article  PubMed  CAS  Google Scholar 

  16. Di Cioccio, R.A., R. Voss, M. Krim, K.-H. Grzeschik, and M. Siniscalco (1975) Identification of human RNA transcripts among heterogeneous nuclear RNA from man-mouse somatic cell hybrids. Proc. Natl. Acad. Sci., USA 72:1868–1872.

    Article  PubMed  Google Scholar 

  17. Miller, O.J., P.R. Cook, P. Meera Khan, S. Shin, and M. Siniscalco (1971) Mitotic separation of two human X-linked genes in man-mouse somatic cell hybrids. Proc. Natl. Acad. Sci., USA 68:116–120.

    Article  PubMed  CAS  Google Scholar 

  18. Russel, W.C., C. Newman, and D.H. Williamson (1975) A simple cytochemical technique for demonstration of DNA in cells in fected with mycoplasmas and viruses. Nature (Lond.) 253:461–462.

    Article  Google Scholar 

  19. Seabright, M. (1972) The use of proteolytic enzymes for the mapping of structural rearrangement in the chromosomes of man. Chromosoma 36:204–210.

    Article  PubMed  CAS  Google Scholar 

  20. Bobrow, M., and J. Cross (1974) Differential staining of human and mouse chromosomes in interspecific cell hybrids. Nature (Lond.) 251:77–79.

    Article  CAS  Google Scholar 

  21. Alhadeff, B., M. Velvasakis, and M. Siniscalco (1977) Simultaneous identification of chromatid replication and of human chromosomes in metaphases of man-mouse somatic cell hybrids. Cytogent. Cell Genet. 19:236–239.

    Article  CAS  Google Scholar 

  22. Perry, P., and S. Wolff (1974) New Giemsa method for the differential staining of sister chromatids. Nature (Lond.) 251:156–158.

    Article  CAS  Google Scholar 

  23. Friend, K.K., S. Chen, and F.H. Ruddle (1976) Differential staining of interspecific chromosomes in somatic cell hybrids by alkaline Giemsa stain. Somatic Cell Genet. 2: 183–188.

    Article  PubMed  CAS  Google Scholar 

  24. Tice, R., J. Chaillet, and E.L. Schneider (1975) Evidence derived from sister chromatid exchanges of restricted rejoining of chromatid subunits. Nature (Lond.) 256:642–644.

    Article  CAS  Google Scholar 

  25. Gibson, A.D., and D.M. Prescott (1974) Frequency and sites of sister chromatid exchanges in rat kangaroo chromosomes. Exp. Cell Res. 86:209–214.

    Article  PubMed  CAS  Google Scholar 

  26. McGill, R., J.W. Tukey, and W.A. Larsen (1978) Variations of box plots. The American Statistician 32:12–16.

    Google Scholar 

  27. Shiraishi, Y., T.H. Yosida, and A.A. Sandberg (1983) Analyses of bromodeoxyuridine-associated sister chromatid exchanges (SCEs) in Bloom’s syndrome based on cell fusion: Single and twin SCEs in endoreduplication. Proc. Natl. Acad. Sci., USA 80:4369–4373.

    Article  PubMed  CAS  Google Scholar 

  28. Shiraishi, Y. (1984) Analysis of SCEs in Bloom syndrome by use of endomitotic and three-way differentiation to techniques. In Sister Chromatid Exchange: 25 Years of Experimental Research, R.R. Tice and A. Hollaender, eds. Plenum Press, New York.

    Google Scholar 

  29. S. Wolff, ed. (1982) Sister Chromatid Exchange. Wiley-Interscience, New York, pp. 1–306.

    Google Scholar 

  30. A.A. Sandberg, ed. (1982) Progress and topics in Cytogenetics, Vol. 2, Sister Chromatid Exchange Alan R. Liss, Inc., New York, pp. 1–706.

    Google Scholar 

  31. Cremer, T., M. Raith, and C. Cremer (1984) Induction of sister chromatid exchanges (SCE) by micro-irradiation of photolesions and the distribution of SCEs. In Sister Chromatic Exchange: 25 Years of Experimental Research, R.R. Tice and A. Hollaender, eds. Plenum Press, New York.

    Google Scholar 

  32. Thompson, L.H., K.W. Brookman, L.E. Dillehay, A.V. Carrano, J.A. Mazrimas, C.L. Mooney, and J.L. Minkler (1982) A CHO-cell strain having hypersensitivity to mutagens, a defect in DNA strand-break repair, and an extraordinary baseline frequency of sister chromatid exchange. Mutat. Res. 95:427–440.

    Article  PubMed  CAS  Google Scholar 

  33. Tice, R., G. Windier, and J.M. Rary (1978) Effect of co-culti vation on sister chromatid exchange frequencies in Bloom’s syndrome and normal fibroblast cells. Nature (Lond.) 273:538–540.

    Article  CAS  Google Scholar 

  34. Barnabei, V.M., and T.E. Kelly (1982) Bloom syndrome fibroblasts secrete a metabolite which enhances SCE rate in normal fibroblasts. Am. J. Med. Genet. 12:245.

    Article  PubMed  CAS  Google Scholar 

  35. Van Buul, P.P.W., A.T. Natarajan, and E.A.H. Verdegaal Immerzeel (1978) Suppression of the frequencies of sister chromatid exchanges in Bloom’s syndrome fibroblasts by co-cultivation with Chinese hamster cells. Human Genet. 44:187–189.

    Article  Google Scholar 

  36. Bartram, C.R., H.W. Rüdiger, and E. Passarge (1979) Frequency of sister chromatid exchanges in Bloom syndrome fibroblasts reduced by co-cultivation with normal cells. Human Genet. 46:331–334.

    Article  CAS  Google Scholar 

  37. Rüdiger, H.W., C.R. Bartram, W. Harder, and E. Passarge (1980) Rate of sister chromatid exchanges in Bloom syndrome fibroblasts reduced by co-cultivation with normal fibroblasts. Human Genet. 32:150–157.

    Google Scholar 

  38. Schonberg, S., and J. German (1980) Sister chromatid exchange in cells metabolically coupled to Bloom’s syndrome cells. Nature (Lond.) 284:72–74.

    Article  CAS  Google Scholar 

  39. Bryant, E.M., H. Hoehn, and G.M. Martin (1979) Normalization of sister chromatid exchange frequencies in Bloom’s syndrome by euploid cell hybridization. Nature (Lond.) 279:795–796.

    Article  CAS  Google Scholar 

  40. Shiraishi, Y., S.I. Matsui, and A.A. Sandberg (1981) Normalization by cell fusion of sister chromatid exchange in Bloom syndrome lymphocytes. Science 212:820–822.

    Article  PubMed  CAS  Google Scholar 

  41. Emerit, I., and P. Cerutti (1981) Clastogenic activity from Bloom syndrome fibroblast cultures. Proc. Natl. Acad. Sci., USA 78:1868–1872.

    Article  PubMed  CAS  Google Scholar 

  42. Emerit, I., P.A. Cerutti, A. Levy, and P. Jalbert (1982) Chromosome breakage factor in the plasma of two Bloom’s syndrome patients. Human Genet. 61:65–67.

    Article  CAS  Google Scholar 

  43. German, J. (1982) Biological role of chromatid exchange. In Gene Amplification, R. Shimcke, ed. Cold Spring Harbor Laboratory, New York, pp. 307–312.

    Google Scholar 

  44. Obata, M., T. Kataoka, S. Nakai, H. Yamagishi, N. Takahashi, Y. Yamawaki-Kataoka, T. Nikaido, A. Shimizu, and T. Honjo (1981) Structure of an rearranged γl gene and its implication to immunoglobulin class-switch mechanism. Proc. Natl. Acad. Sci., USA 78:2437–2441.

    Article  PubMed  CAS  Google Scholar 

  45. Van Ness, B.G., C. Coleclough, R.P. Perry, and M. Weigert (1982) DNA between variable and joining gene segments of immunoglobulin . light chain is frequently retained in cells that rearrange the locus. Proc. Natl. Acad. Sci., USA 79:262–266.

    Article  PubMed  Google Scholar 

  46. Höchtl, J., C.R. Müller, and H.G. Zachau (1982) Recombined flanks of the variable and joining segments of immunoglobulin genes. Proc. Natl. Acad. Sci., USA 79:1383–1387.

    Article  PubMed  Google Scholar 

  47. Klein, G. (1981) The role of gene dosage and genetic transpositions in carcinogenesis. Nature (Lond.) 294:313–318.

    Article  CAS  Google Scholar 

  48. Cavenee, W.K., T.P. Dryja, R.A. Phillips, W.F. Benedict, R. Godbout, B.L. Gallie, A.L. Murphree, L.C. Strong, and R.L. White (1983) Expression of recessive alleles by chromosomal me chanisms in retinoblastoma. Nature (Lond.) 305:779–784.

    Article  CAS  Google Scholar 

  49. C.T. Caskey, and R. White, eds. (1983) Banbury Report 14. Re combinant DNA Applications to Human Disease. Cold Spring Harbor Laboratory, New York, pp. 1–371.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Alhadeff, B., Siniscalco, M. (1984). Complementation Studies in Murine/Human Hybrids Suggest Multiple Etiology for Increased Rate of Sister Chromatid Exchange in Mammalian Cells. In: Tice, R.R., Hollaender, A., Lambert, B., Morimoto, K., Wilson, C.M. (eds) Sister Chromatid Exchanges. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4892-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4892-4_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4894-8

  • Online ISBN: 978-1-4684-4892-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics