Purine Nucleoside Phosphorylase

Measurement of Activity and Use of Inhibitors
  • Johanna D. Stoeckler
  • Robert E. ParksJr.


It has long been appreciated that purine nucleoside phosphorylase (PNP; purine nucleoside: orthophosphate ribosyltransferase, EC may play a role in cancer chemotherapy by catalyzing the degradation of potentially cytotoxic purine deoxynucleoside analogs, e.g., 2′-deoxy-6-thioguanosine. More recently, the identification of an immunodeficiency disorder associated with a deficiency in PNP (Giblett et al., 1975) has drawn attention to this enzyme as a possible target for the design of novel immunosuppressive agents. In contrast to the severe combined immunodeficiency disease seen with adenosine deaminase deficiency, where defects occur in both cellular and humoral immunity, patients with PNP deficiency lack cellular, but not humoral, immunity. Also, these individuals excrete the more soluble nucleosides of hypoxanthine and guanine rather than the relatively insoluble end product of purine metabolism, uric acid. Thus it has been proposed that a potent inhibitor of PNP might serve as a biochemical modifier in chemotherapy with purine nucleoside analogs, as a selective immunosuppressive agent, and perhaps in the treatment of secondary gout (Parks et al., 1981; Stoeckler et al., 1980a, 1982; Kazmers et al., 1981).


Xanthine Oxidase Human Erythrocyte Purine Nucleoside Purine Base Purine Nucleoside Phosphorylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwal, R. P., and Parks, R. E., Jr. 1971. Purine nucleoside Phosphorylase from human erythrocytes. V. Content and behavior of sulfhydryl groups. J. Biol. Chem, 246: 3763–3768.PubMedGoogle Scholar
  2. Agarwal, K. C., Agarwal, R. P., Stoeckler, J. D., and Parks, R. E., Jr. 1975. Purine nucleoside Phosphorylase. Microheterogeneity and comparison of kinetic behavior of the enzyme from several tissues and species. Biochemistry, 74: 79–84.CrossRefGoogle Scholar
  3. Ammann, A. J. 1978. Immunological aberrations in purine nucleoside deficiencies. Ciba Found. Symp, 68: 55–15.PubMedGoogle Scholar
  4. Carson, D. A., Kaye, J., and Seegmiller, J. E. 1977. Lymphospecific toxicity in adenosine deaminase deficiency and purine nucleoside Phosphorylase deficiency: possible role of nucleoside kinase(s), Proc. Natl. Acad. Sci. USA, 74: 5677–5681.PubMedCrossRefGoogle Scholar
  5. Chan, T. 1978. Deoxyguanosine toxicity on lymphoid cells as a cause for immunosuppression in purine nucleoside Phosphorylase deficiency. Cell, 14: 523–530.PubMedCrossRefGoogle Scholar
  6. Cohen, A., and Sussman, M. 1975. Guanosine metabolism and regulation of fruiting body construction in Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA, 72: 4479–4482.PubMedCrossRefGoogle Scholar
  7. Cowan, M. J., Cashman, D., and Ammann, A. J. 1981. Effects of formycin B on human lymphocyte deoxyribonucleic acid synthesis. Biochem. Pharmacol, 30: 2651–2656.PubMedCrossRefGoogle Scholar
  8. Crabtree, G. W., and Henderson, J. F. 1971. Rate-limiting steps in the interconversion of purine ribonucleotides in Ehrlich ascites tumor cells in vitro. Cancer Res, 31: 985–991.PubMedGoogle Scholar
  9. Crabtree, G. W., Agarwal, R. P., Parks, R. E., Jr., Lewis, A. F., Wotring, L. L., and Townsend, L. B. 1979. N-Methylformycins. Reactivity with adenosine deaminase, incorporation into intracellular nucleotides of human erythrocytes and L1210 cells and cytotoxicity in LI210 cells. Biochem. Pharmacol, 25: 1491–1500.CrossRefGoogle Scholar
  10. Edwards, Y. H., Hopkinson, D. A., and Harris, H. 1971. Inherited variants of human nucleoside Phosphorylase. Ann. Hum. Genet. Lond, 34: 395–408.CrossRefGoogle Scholar
  11. Fox, I. H., Andres, C. M., Gelfand, E. W., and Biggar, D. 1977. Purine nucleoside Phosphorylase deficiency: Altered kinetic properties of a mutant enzyme. Science, 197. 1084–1086.PubMedCrossRefGoogle Scholar
  12. Gelfand, E. W., Dosch, H.-M., Biggar, W. D., and Fox, I. H. 1978. Partial purine nucleoside Phos-phorylase deficiency. Studies of lymphocyte function. J. Clin. Invest, 67: 1071–1080.CrossRefGoogle Scholar
  13. Giblett, E. R., Ammann, A. J., Wara, D. W., Sandman, R., and Diamond, L. K. 1975. Nucleoside- phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet 7: 1010–1015.CrossRefGoogle Scholar
  14. Gudas, L. J., Ullman, B., Cohen, A., and Martin, D. W., Jr. 1978. Deoxyguanosine toxicity in a mouse T lymphoma: Relationship to purine nucleoside phosphorylase-associated immune dysfunction. Cell, 74: 531–538.CrossRefGoogle Scholar
  15. Hershfield, M. D. 1981. Proposed explanation for S-adenosylhomocysteine hydrolase deficiency in purine nucleoside Phosphorylase and hypoxanthine-guanine phosphoribosyltransferase-deficient patients. J. Clin. Invest, 67: 696–701.PubMedCrossRefGoogle Scholar
  16. Ito, K., Sakura, N., Usui, T., and Uchino, H. 1977. Screening for primary immunodeficiencies as-sociated with purine nucleoside Phosphorylase deficiency or adenosine deaminase deficiency. J. Lab. Clin. Med, 90: 844–848.PubMedGoogle Scholar
  17. Kalckar, H. M. 1947. Differential spectrophotometry of purine compounds by means of specific en-zymes I. Determination of hydroxypurines. J. Biol. Chem, 767: 429–443.Google Scholar
  18. Kazmers, I. S., Mitchell, B. S., Dadonna, P. E., Wotring, L. L., Townsend, L. B., and Kelley, W. N. 1981. Inhibition of purine nucleoside Phosphorylase by 8-aminoguanosine: Selective toxicity for T lymphoblasts. Science, 274: 1137–1139.CrossRefGoogle Scholar
  19. Kim, B. K., Cha, S., and Parks, R. E., Jr. 1968. Purine nucleoside Phosphorylase from human erythrocytes. II. Kinetic analysis and substrate-binding studies. J. Biol. Chem, 245: 1771–1776.Google Scholar
  20. Lowry, O. H., and Lopez, J. A. 1946. The determination of inorganic phosphate in the presence of labile phosphate esters. J. Biol. Chem, 762: 421–428.Google Scholar
  21. Martin, D. W., Jr., and Gelfand, E. W. 1981. Biochemistry of diseases of immunodevelopment. Ann. Rev. Biochem, 50: 845–877.PubMedCrossRefGoogle Scholar
  22. Milman, G. 1978. Chinese hamster purine nucleoside Phosphorylase. Methods Enzymol, 57: 538–543.CrossRefGoogle Scholar
  23. Moyer, T. P., and Fischer, A. G. 1976. Purification and characterization of a purine-nucleoside Phos-phorylase from bovine thyroid. Arch. Biochem. Biophys, 774: 622–629.CrossRefGoogle Scholar
  24. Parks, R. E., Jr., and Agarwal, R. P. 1972. Purine nucleoside Phosphorylase. In: The Enzymes, 3rd ed., Volume 7, pp. 483–514. Ed. by Boyer, P. D. Academic Press, New York.Google Scholar
  25. Parks, R. E., Jr., Stoeckler, J. D., Cambor, C., Savarese, T. M., Crabtree, G. W., and Chu, S.-H. 1981. Purine nucleoside Phosphorylase and 5’-methylthioadenosine Phosphorylase: targets of chemotherapy. In: Molecular Actions and Targets for Cancer Chemotherapeutic Agents, pp. 229–252. Ed. by Sartorelli, A., Lazo, J. S., and Bertino, J. R. Academic Press, New York.Google Scholar
  26. Ross, A. F., Agarwal, K. C., Chu, S.-H., and Parks, R. E., Jr. 1973. Studies on the biochemical actions of 6-selenoguanine and 6-selenoguanosine. Biochem. Pharmacol, 22: 141–154.PubMedCrossRefGoogle Scholar
  27. Sheen, M. R., Kim, B. K., and Parks, R. E., Jr. 1968. Purine nucleoside Phosphorylase. III. Inhibition by the inosine analog formycin B of the isolated enzyme and of nucleoside metabolism in intact erythrocytes and Sarcoma 180 cells. Mol. Pharmacol., 4: 293–299.PubMedGoogle Scholar
  28. Simmonds, H. A., Watson, A. R., Webster, D. R., Sahota, A., and Perrett, D. 1982. GTP depletion and other erythrocyte abnormalities in inherited PNP deficiency. Biochem. Pharmacol, 57: 941–946.CrossRefGoogle Scholar
  29. Smith, C. M., and Henderson, J. F. 1982. Deoxyadenosine triphosphate accumulation in erythrocytes of deoxycoformycin-treated mice. Biochem. Pharmacol, 57: 1545–1551.CrossRefGoogle Scholar
  30. Stoeckler, J. D. 1984. Purine nucleoside Phosphorylase: A target for chemotherapy. In: Developments in Cancer Chemotherapy, pp. 35–60. Ed. by Glazer, R. I. CRC Press, Boca Raton.Google Scholar
  31. Stoeckler, J. D., Agarwal, R. P., Agarwal, K. C., and Parks, R. E., Jr. 1978. Purine nucleoside Phosphorylase from human erythrocytes. In: Methods Enzymol., 57: 530–538.CrossRefGoogle Scholar
  32. Stoeckler, J. D., Cambor, C., Burgess, F. W., Erban, S. B., and Parks, R. E., Jr. 1980a. Purine nucleoside Phosphorylase inhibitors as potential chemotherapeutic and immunosuppressive agents. Pharmacologist, 22: 99.Google Scholar
  33. Stoeckler, J. D., Cambor, C., and Parks, R. E., Jr. 1980b. Human erythrocytic purine nucleoside Phosphorylase: Reaction with sugar-modified nucleoside substrates. Biochemistry, 79: 107.Google Scholar
  34. Stoeckler, J. D., Cambor, C., Kuhns, V., Chu, S.-H., and Parks, R. E., Jr. 1982. Inhibitors of purine nucleoside Phosphorylase. C(8) and C(5’) substitutions. Biochem. Pharmacol, 57: 163–171.CrossRefGoogle Scholar
  35. Tax, W. J. M., and Veerkamp, J. H. 1978. Activity of adenosine deaminase and purine nucleoside Phosphorylase in erythrocytes and lymphocytes of man, horse and cattle. Comp. Biochem. Physiol, 675: 439–441.Google Scholar
  36. Uitendaal, M. P., deBruyn, C. H. M., Oei, T. L., Hösli, P., and Griscelli, C. 1978. A new ultrami- crochemical assay for purine nucleoside Phosphorylase. Anal. Biochem, 54: 147–153.CrossRefGoogle Scholar
  37. Ullman, B., Gudas, L. J., Clift, S. M., and Martin, D. W., Jr. 1979. Isolation and characterization of purine-nucleoside phosphorylase-deficient T-lymphoma cells and secondary mutants with altered ribonucleotide reductase: genetic model for immunodeficiency. Proc. Natl. Acad. Sci. USA, 76: 1074–1078.PubMedCrossRefGoogle Scholar
  38. Van der Weyden, M. B., and Bailey, L. 1982. A micromethod for determining adenosine deaminase and purine nucleoside Phosphorylase activity in cells from peripheral blood. Clin. Chim. Acta, 52: 179–184.Google Scholar
  39. Willis, R. C., Robins, R. K., and Seegmiller, J. E. 1980. An in vivo and in vitro evaluation of 1-ß-D- ribofuranosyl-l, 2, 4-triazole-3-carboxamidine. Mol. Pharmacol, 75: 287–295.Google Scholar
  40. Zimmerman, T. P., Gersten, N. B., Ross, A. F., and Miech, R. P. 1971. Adenine as substrate for purine nucleoside Phosphorylase. Can. J. Biochem, 49: 1050–1054.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Johanna D. Stoeckler
    • 1
  • Robert E. ParksJr.
    • 1
  1. 1.Section of Biochemical Pharmacology Division of Biology and MedicineBrown UniversityProvidenceUSA

Personalised recommendations