S-Adenosylhomocysteine Hydrolase

Measurement of Activity and Use of Inhibitors
  • Peter K. Chiang


S-Adenosylhomocysteine (AdoHcy) is a product in all transmethylation reactions in which S-adenosylmethionine (AdoMet) is the methyl donor. In eukaryotes, including plants, the principal pathway for the catabolism of AdoHcy is its hydrolysis to adenosine (Ado) and L-homocysteine (Hcy) by AdoHcy hydrolase (AdoHcyase; EC, an enzyme first discovered in rat liver by de la Haba and Cantoni (1959). The reaction (Figure 1) catalyzed by AdoHcyase is reversible, with equilibrium far in the direction of synthesis; the equilibrium constant (K eq) is about 1 μM. Physiologically, however, the reaction proceeds in the hydrolytic direction because both Ado and Hcy are removed efficiently by various enzymes (Figure 1). Adenosine can either be deaminated to inosine by adenosine deaminase or be phosphorylated to AMP by adenosine kinase; homocysteine is either remethylated back to methionine or is converted to cystathionine after condensation with serine.


Adenosine Deaminase Beef Liver Hamster Liver Transmethylation Reaction Adenine Arabinoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bader, J., Brown, N. R., Chiang, P. K., and Cantoni, G. L. 1978. 3-Deazaadenosine, an inhibitor of adenosylhomocysteine hydrolase, inhibits reproduction of Rous sarcoma virus and transformation of chick embryo cells. Virology, 89: 494–505.PubMedCrossRefGoogle Scholar
  2. Borchardt, R. T., Huber, J. A., and Wu, Y. S. 1976. A convenient preparation of S-adenosylhomo- cysteine and related compounds. J. Org. Chem, 47: 565–567.CrossRefGoogle Scholar
  3. Borchardt, R. T., Wu, Y. S., and Wu, B. S. 1977. S-Adenosyl-L-homocysteine dialdehyde: An affinity labeling reagent for histamine N-methyltransferase. Biochem. Biophys. Res. Commun, 75: 1025–1033.CrossRefGoogle Scholar
  4. Braun, J., Rosen, F. S., and Unanue, E. R. 1980. Capping and adenosine metabolism: genetic and pharmacological studies. J. Exp. Med, 757: 174–183.CrossRefGoogle Scholar
  5. Briske-Anderson, M., and Duerre, J. A. 1982. S-Adenosylhomocysteine hydrolase from rat liver. Can. J. Biol. Chem, 60: 118–123.Google Scholar
  6. Cantoni, G. L., and Chiang, P. K. 1980. The role of S-adenosylhomocysteine and S-adenosylhomo- cysteine hydrolase in the control of biological methylation. In: Natural Sulfur Compounds, pp. 67–80. Ed. by Cavallini, D., Gaull, G. E., and Zappia, V. Plenum Press, New York.CrossRefGoogle Scholar
  7. Cass, C. E., Seiner, M., Ferguson, P. J., and Philips, J. R. 1982. Effects of 2’-deoxyadenosine, 9-β- arabinofuranosyladenine, and related compounds on S-adenosyl-L-homocysteine hydrolase activity in synchronous and asynchronous cultured cells. Cancer Res, 42: 4991–4998.PubMedGoogle Scholar
  8. Chabannes, B., Cronenberger, L., and Pacheco, H. 1979. Rat liver S-adenosyl-L-homocysteine hydrolase purification by affinity column chromatography. Experientia, 35: 1014–1016.PubMedCrossRefGoogle Scholar
  9. Chiang, P. K. 1981. Conversion of 3T3-L1 fibroblasts to fat cells by an inhibitor of methylation: effect of 3-deazaadenosine. Science, 277: 1164–1166.CrossRefGoogle Scholar
  10. Chiang, P. K., and Cantoni, G. L. 1979. Perturbation of biochemical transmethylation by 3-deazaa- denosine in vivo. Biochem. Pharmacol, 25: 1897–1902.CrossRefGoogle Scholar
  11. Chiang, P. K., Richards, H. H., and Cantoni, G. L. 1977. S-Adenosyl-L-homocysteine hydrolase: Analogues of S-adenosyl-L-homocysteine as potential inhibitors. Mol. Pharmacol, 71: 939–947.Google Scholar
  12. Chiang, P. K., Cantoni, G. L., Bader, J. P., Shannon, W. M., Clayton, S. J., and Montgomery, J. A. 1978. Adenosylhomocysteine hydrolase inhibitors: synthesis of 5’-deoxy-5’-(isobutylthio)-3- deazaadenosine and its effect on Rous sarcoma virus and Gross murine leukemia virus. Biochem. Biophys. Res. Commun, 52: 417–423.CrossRefGoogle Scholar
  13. Chiang, P. K., Im, Y. S., and Cantoni, G. L. 1980. Phospholipids biosynthesis by methylations and choline incorporation: Effect of 3-deazaadenosine. Biochem. Biophys. Res. Commun., 94: 174–181.PubMedCrossRefGoogle Scholar
  14. Chiang, P. K., Guranowski, A., and Segall, J. 1981. Irreversible inhibition of S-adenosylhomocysteine hydrolase by nucleoside analogs. Archiv. Biochem. Biophys, 207: 175–184.CrossRefGoogle Scholar
  15. Chiang, P. K., Wiesmann, W. P., and Johnson, J. P. 1983. Aldosterone stimulates methylation reaction and membrane events in cultured toad urinary bladder epithelial cells. Fed. Proc, 42: 717.Google Scholar
  16. Crooks, P. A., Dreyer, R. N., and Coward, J. K. 1979. Metabolism of S-adenosylhomocysteine and S-tubercydinylhomocysteine in neuroblastoma cells. Biochemistry, 75: 2601–2609.CrossRefGoogle Scholar
  17. de la Haba, G., and Cantoni, G. L. 1959. The enzymatic synthesis of S-adenosyl-L-homocysteine from adenosine and homocysteine. J. Biol. Chem, 234: 603–608.Google Scholar
  18. Doskeland, S. O., and UelandT P. M. 1982. Comparison of some physical and kinetic properties of S-adenosylhomocysteine hydrolase from bovine liver, bovine adrenal cortex and mouse liver Biochim. Biophys. Acta, 705: 185–193.Google Scholar
  19. Dudman, N. P. B., and Wilcken, D. E. L. 1982. Homocysteine thiolactone and experimental homocysteinemia. Biochem. Med, 27: 244–253.PubMedCrossRefGoogle Scholar
  20. Duerre, J. A., and Walker, R. D., 1977, Metabolism of adenosylhomocysteine. In: The Biochemistry of Ade nosy (methionine, pp. 43–57. ( Ed. by Salvatore, F., Borek, E., Zappia, V., Williams-Ash-man, H. G., and Schlenk, F. Columbia University Press, New York.Google Scholar
  21. Eloranta, T. O. 1977. Tissue distribution of S-adenosylmethionine and S-adenosylhomocysteine in the rat. Biochem. J., 166: 521–529.PubMedGoogle Scholar
  22. Eloranta, T. O., Kajander, E. O., and Raina, A. M. 1982. Effect of 9-0-D-arabinofuranosyladenine and erythro-9-(2-hydroxy-3-nonyl)adenine on the metabolism of S-adenosylhomocysteine, S-adenosylmethionine, and adenosine in rat liver. Med. Biol., 60: 212–211.Google Scholar
  23. Ferro, A. J., Barrett, A., and Shapiro, S. K. 1976. Kinetic properties and the effect of substrate analogues on 5’-methylthioadenosine nucleosidase from Escherichia coli. Biochim. Biophys. Acta, 438. 481–494.Google Scholar
  24. Finkelstein, J. D., Harris, B. J., Grossman, M. R., and Morri, H. 1978. S-Adenosylhomocysteine metabolism in rat hepatomas (40339). Proc. Soc. Exp. Biol. Med, 159: 313–316.PubMedGoogle Scholar
  25. Fox, I., Palella, T. D., Thompson, D., and Herring, C. 1982. Adenosine metabolism: modification by S-adenosylhomocysteine and 5’-methythioadenosine. Biochem. Biophys, 215: 302–308.CrossRefGoogle Scholar
  26. Fujioka, M., and Takata, Y. 1981. S-Adenosylhomocysteine hydrolase from rat liver. J. Biol. Chem, 256: 1631–1635.PubMedGoogle Scholar
  27. Garcia-Castro, I., Mato, J. M., Vasanthakumar, G. I., Wiesmann, W. P., Schiffmann, E., and Chiang, P. K. 1983. Paradoxical effects of adenosine on neutrophil chemotaxis. J. Biol. Chem, 258: 4345–4349.PubMedGoogle Scholar
  28. Gordon, R. K., Brown, N. D., and Chiang, P. K. 1983. Inhibition of adenosylmethionine decarboxylase and perturbation of polyamine metabolism by 3-deaza-(±)aristeromycin. Biochem. Biophys. Res. Commun, 114: 505–510.PubMedCrossRefGoogle Scholar
  29. Guranowski, A., and Jakubowski, H. 1983. Substrate specificity of S-adenosylhomocysteinase: Cysteine is a substrate of the plant and mammalian enzymes. Biochim. Biophys. Acta, 742: 250–256.PubMedCrossRefGoogle Scholar
  30. Guranowski, A., and Pawelkiewicz, J. 1977. Adenosylhomocysteinase from yellor lupin seeds: Purification and properties. Eur. J. Biochem, 50: 517–523.CrossRefGoogle Scholar
  31. Guranowski, A. B., Chiang, P. K., and Cantoni, G. L. 1981a. 5’-Methylthioadenosine nucleosidase: Purification and characterization of the enzyme from Lupinus lute us seeds. Eur. J. Biochem, 114: 293–299.Google Scholar
  32. Guranowski, A., Montgomery, J. A., Cantoni, G. L., and Chiang, P. K. 1981b. Adenosine analogues as substrates and inhibitors of S-adenosylhomocysteine hydrolase. Biochemistry, 20: 110–115.PubMedCrossRefGoogle Scholar
  33. Harris, M. 1982. Induction of thymidine kinase in enzyme-deficient Chinese hamster cells. Cell, 29: 483–492.PubMedCrossRefGoogle Scholar
  34. Helland, S., and Ueland, P. M. 1981 The relation between the functions of 9-0-D-arabinofuranosy-ladenine as inactivator and substrate of S-adenosylhomocysteine hydrolase. J. Pharmacol. Exp. Ther, 275: 758–763.Google Scholar
  35. Helland, S., and Ueland, P. M. 1982. Inactivation of S-adenosylhomocysteine hydrolase by 9-O-D- arabinofuranosyladenine in intact cells. Cancer Res, 42: 1130–1136.PubMedGoogle Scholar
  36. Hershfield, M. S., and Kredich, N. M. 1978. S-Adenosylhomocysteine hydrolase is an adenosine- binding protein: a target for adenosine toxicity. Science, 202: 757–760.PubMedCrossRefGoogle Scholar
  37. Hershfield, M. S., Kredich, N. M., Ownby, D. R., Ownby, H., and Buckley, R. 1979. In vivo in-activation of erythrocyte S-adenosylhomocysteine hydrolase by 2’-deoxyadenosine in adenosine deaminase-deficient patients. J. Clin. Invest 65: 807–811.CrossRefGoogle Scholar
  38. Hoffman, J. 1975. A rapid liquid chromatographic determination of S-adenosylmethionine and S-ad-enosylhomocysteine in subgram amounts of tissue. Anal. Biochem, 65: 522–530.CrossRefGoogle Scholar
  39. Hyman, B. T., Stoll, L. L., and Spector, A. A. 1982. Prostaglandin production by 3T3-L1 cells in culture. Biochim. Biophys. Acta, 775: 375–385.Google Scholar
  40. Im, Y. S., Chiang, P. K., and Cantoni, G. L. 1979. Guanidoacetate methyltransferase: Purification and molecular properties. J. Biol. Chem, 254: 1047–11050.Google Scholar
  41. Johnson, G. S., and Chiang, P. K. 1981. 1-Methylnicotinamide and NAD metabolism in normal and transformed rat kidney cells. Archiv. Biochem. Biophys, 270: 263–269.Google Scholar
  42. Kajander, E. O., and Raina, A. M. 1981. Affinity-chromatographic purification of S-adenosyl-L-homocysteine hydrolase: Some properties of the enzyme from rat liver. Biochem. J, 795: 503–512.Google Scholar
  43. Kamatani, N., Willis, E. H., and Carson, D. A. 1983. Selection and characterization of a murine lymphoid cell line partially deficient in S-adenosylhomocysteine hydrolase. Biochim. Biophys. Acta, 762: 205–214.PubMedCrossRefGoogle Scholar
  44. Kim, I.-K., Zhang, C.-Y., Chiang, P. K., and Cantoni, G. L. 1983. S-adenosylhomocysteine hydrolase from hamster liver: purification and kinetic properties. Archiv. Biochem. Biophys, 226: 65–72.CrossRefGoogle Scholar
  45. Lecompte, T., Randon, J., Chignard, M., Vargaftig, B. B., and Dray, F. 1982. Interference of transmethylation inhibitors with thromboxane synthesis in rat platelets. Biochem. Biophys. Res. Com- mun, 106: 566–513.CrossRefGoogle Scholar
  46. Leonard, E. J., Skeel, A., Chiang, P. K., and Cantoni, G. L. 1978. The action of the adenosylhom- ocysteine hydrolase inhibitor, 3-deazaadenosine, on phagocytic function of mouse macrophages and human monocytes. Biochem. Biophys. Res. Commun, 84: 102–109.PubMedCrossRefGoogle Scholar
  47. Lucas, D. L., Chiang, P. K., and Wright, D. 1983. Induction of human promyelocytic leukemia cells by 3-deazaaristeromycin, an inhibitor of methylation. Fed. Proc, 42: 43511.Google Scholar
  48. Miura, G. A., Santangelo, J. R., Gordon, R. K., and Chiang, P. K. 1984. Analysis of S-adenosyl-methionine and related sulfur metabolites in animal tissues. Anal. Biochem, 747. 161–167.CrossRefGoogle Scholar
  49. Montgomery, J. A., Clayton, S. J., Thomas, H. J., Shannon, W. M., Arnett, G., Bodner, A. J., Kim, I.-K., Cantoni, G. L., and Chiang, P. K. 1982. Carbocyclic analogue of 3-deazaadenosine: a novel antiviral agent-using S-adenosylhomocysteine hydrolase as a pharmacological target. J. Med. Chem, 25: 626–629.PubMedCrossRefGoogle Scholar
  50. Morita, Y., Siraganian, R. P., Tang, C. K., and Chiang, P. K. 1982. Inhibition of histamine release and phosphatidylcholine metabolism by 5’-deoxy-5’-isobutylthio-3-deazaadenosine. Biochem. Pharmacol, 31: 2111–2113.PubMedCrossRefGoogle Scholar
  51. Mudd, S. H., and Poole, J. R. 1975. Labile methyl balances for normal humans on various dietary regimens. Metabolism, 24: 721–735.PubMedCrossRefGoogle Scholar
  52. Murato, K., and Monard, D. 1982. Inhibition of S-adenosylmethionine-linked methylation can lead to neurite extension in neuroblastoma cells. FEBS Lett, 744: 321–325.CrossRefGoogle Scholar
  53. Palella, T., Schatz, R. A., Wilens, T. E., and Fox, I. H. 1982. S-Adenosylhomocysteine accumulation and selective cytoxicity in cultured T- and B-lymphoblasts. J. Lab. Clin. Med, 100: 269–218.PubMedGoogle Scholar
  54. Palmer, J. L., and Abeles, R. H. 1979. The mechanism of action of S-adenosylhomocysteinase. J. Biol. Chem, 254: 1217–1226.PubMedGoogle Scholar
  55. Phyall, W., Chiang, P., Cantoni, G. L., and Lovenberg, W. 1980. The hypotensive action of 3-deazaadenosine. Eur. J. Pharmacol, 67: 485–488.PubMedCrossRefGoogle Scholar
  56. Poulton, J. E., and Butt, V. S. 1976. Purification and properties of S-adenosylhomocysteine hydrolase from leaves of spinach beet. Archiv. Biochem. Biophys, 172: 135–142.CrossRefGoogle Scholar
  57. Pritchard, P. H., Chiang, P. K., Cantoni, G. L., and Vance, D. E. 1982. Inhibition of phosphatidy- lethanolamine N-methylation by 3-deazaadenosine stimulates the synthesis of phosphatidylcholine via the CDP-choline pathway. J. Biol. Chem, 257: 6362–6367.PubMedGoogle Scholar
  58. Randon, J., Lecompte, T., Chignard, M., Siess, W., Marias, G., Dray, F., and Vargaftig, B. B. 1981. Dissociation of platelet activation from transmethylation of their membrane phospholipids. Nature, 293: 660–662.PubMedCrossRefGoogle Scholar
  59. Richards, H. H., Chiang, P. K., and Cantoni, G. L. 1978. Adenosylhomocysteine hydrolase: Crystallization of the purified enzyme and its properties. J. Biol. Chem, 253: 4476–4480.PubMedGoogle Scholar
  60. Sacks, S. L., Merigan, T. C., Kaminska, J., and Fox, I. H. 1982. Inactivation of S-adenosylhomocysteine hydrolase during adenine arabinoside therapy. J. Clin. Invest, 69: 226–230.PubMedCrossRefGoogle Scholar
  61. Schanche, J.-S., Schanche, T., and Ueland, P. M. 1982. Inhibition of phospholipid methylation in isolated rat hepatocytes by analogues of adenosine and S-adenosylhomocysteine. Biochem. Biophys. Acta, 727: 399–407.Google Scholar
  62. Schatz, R. A., Vunnam, C. R., and Sellinger, O. Z. 1979. S-Adenosyl-L-homocysteine hydrolase from rat brain: Purification and some properties. In: Transmethylation, pp. 143–153. Ed. by Usdin, E., Borchardt, R. T., and Creveling, C. R. Elsevier, Amsterdam.Google Scholar
  63. Shattil, S. J., Montgomery, J. A., and Chiang, P. K. 1982. The effect of pharmacologic inhibition of phospholipid methylation on human platelet function. Blood, 59: 906–912.PubMedGoogle Scholar
  64. Trager, W., Tershakovec, M., Chiang, P. K., and Cantoni, G. L. 1980. Plasmodium falciparum: Antimalarial activity in culture of sinefungin and other methylation inhibitors. Exp. Parasitol, 50: 83–89.PubMedCrossRefGoogle Scholar
  65. Trewyn, R. A., and Kerr, S. J. 1977. The enzymatic synthesis of S-adenosyl-L-[2(n)-3H]homocysteine. Anal. Biochem, 52: 310–316.CrossRefGoogle Scholar
  66. Ueland, P. M. 1983. Pharmacological and biochemical aspects of S-adenosylhomocysteine and S- adenosylhomocysteine hydrolase. Pharmacol. Rev, 34: 223–253.Google Scholar
  67. Votruba, I., and Holy, A. 1982. Eritadenines-Novel type of inhibitors of S-adenosine-L-cysteine hydrolase. Collect. Czech. Chem. Commun, 47: 166–172.CrossRefGoogle Scholar
  68. White, E. L., Shaddix, S. C., Brockman, R. W., and Bennett, Jr., L. L. 1982. Comparison of actions of 9-β-D-arabinofuranosyladenine on target enzymes from mouse tumor cells. Cancer Res., 42: 2260–2264.PubMedGoogle Scholar
  69. Zimmerman, T. P., Wolberg, G., and Duncan, G. S. 1978. Inhibition of lymphocyte-mediated cytolysis by 3-deazaadenosine: Evidence by a methylation reaction essential to cytolysis. Proc. Natl. Acad. Sci. USA, 75: 6220–6224.PubMedCrossRefGoogle Scholar
  70. Zimmerman, T. P., Wolberg, G., Stopford, C. R., and Duncan, G. S. 1979. 3-Deazaadenosine as a tool for studying the relationship of cellular methylation reactions to various leukocyte functions. In: Transmethylation, pp. 187–196. Ed. by Usdin, E., Borchardt, R. T., and Creveling, C. R. Elsevier, Amsterdam.Google Scholar
  71. Zimmerman, T. P., Wolberg, G., Duncan, G. S., and Elion, G. B. 1980. Adenosine analogues as substrates and inhibitors of S-adenosylhomocysteine hydrolase in intact lymphocytes. Biochemistry, 79: 2252–2259.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Peter K. Chiang
    • 1
  1. 1.Division of BiochemistryWalter Reed Army Institute of ResearchUSA

Personalised recommendations