Measurement of Activities and Use of Inhibitors
  • J. D. Pearson


The concept that nucleotidases are present at the cell surface with their active sites accessible to extracellular substrates is nearly 40 years old. Rothstein and Meier (1948) showed that yeast cells possess ectoenzymes capable of catabolizing ATP and ADP, and the demonstration of an ecto-ATPase activity in mammalian nerve cells and red blood cells followed shortly thereafter (A bood and Gerard, 1954; Herbert, 1956). Esner et al. (1958) were among the first to use the electron microscope in combination with histochemical techniques to localize ATPase and 5’-nucleotidase (AMPase) activities at the plasma membrane. The cellular specificity of ectonucleotidases was also under investigation; for example, Cummins and Hydén (1962) noted the presence of ecto-ATPase in glial cells but its absence in neurons.


Adenosine Deaminase Adenosine Triphosphatase Liver Plasma Membrane Extracellular Nucleotide Nucleotidase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abood, L. G., and Gerard, R. W. 1954. Enzyme distribution in isolated particulates of rat peripheral nerve. J. Cell Comp. Physiol, 43: 379–392.CrossRefGoogle Scholar
  2. Agren, G., and Ronquist, G. 1970. Isolation of 32P-labelled phosphorylserine from Ehrlich mouse- ascites tumour cells suspended in an isotonic medium containing 32P-labelled adenosine triphosphate. Acta Physiol. Scand, 79. 125–128.PubMedCrossRefGoogle Scholar
  3. Ägren, Ponten, J., Ronquist, G., and Westermark, B. 1971a. Formation of extracellular adenosine triphosphate by normal and neoplastic cells in culture. J. Cell Physiol, 77: 331–336.PubMedCrossRefGoogle Scholar
  4. Agren, Ponten, J., Ronquist, G., and Westermark, B. 1971b. Demonstration of an ATPase at the cell surface of intact normal and neoplastic cells in culture. J. Cell Physiol, 75: 171–176.CrossRefGoogle Scholar
  5. Agren, Ponten, J., Ronquist, G., and Westermark, B. 1974. Nucleoside diphosphate kinase at the cell surface of neoplastic human cells in culture. J. Cell Physiol, 83: 91–102.PubMedCrossRefGoogle Scholar
  6. Andy, R. J., and Kornfeld, R. 1982. The adenosine deaminase binding protein of human skin fibroblasts is located on the cell surface. J. Biol. Chem, 257: 7922–7925.PubMedGoogle Scholar
  7. Avruch, J., and Wallach, D. F. H. 1971. Preparation and properties of plasma membrane and endoplasmic reticulum fragments from isolated rat fat cells. Biochim. Biophys. Acta, 25: 334–337.Google Scholar
  8. Baer, H. P., and Drummond, G. I. 1968. Catabolism of adenosine nucleotides by the isolated perfused rat heart. Proc. Soc. Exp. Biol. Med, 127: 33–38.PubMedGoogle Scholar
  9. Baer, H. P. Drummond, G. I., and Duncan, E. L. 1966. Formation and deamination of adenosine by cardiac muscle enzymes. Mol. Pharmacol, 2: 67 - 76.PubMedGoogle Scholar
  10. Berenblum, I., and Chain, E. 1938. An improved method for the colorimetric determination of phosphate. Biochem. J, 32: 295–298.PubMedGoogle Scholar
  11. Berg, H. C., 1969. Sulfanilic acid diazonium salt: A label for the outside of the human erythrocyte membrane. Biochim. Biophys. Acta, 755: 65–78.Google Scholar
  12. Berne, R. M. 1980. The role of adenosine in the regulation of coronary blood flow. Circulation Res, 47: 807–813.PubMedCrossRefGoogle Scholar
  13. Berne, R. M., Rail, T. W., and Rubio, R. (eds.) 1983. Regulatory Function of Adenosine, Nijhoff, The Hague.Google Scholar
  14. Binet, L., and Burstein, M. 1950. Poumon et action vasculaire de F adenosine-triphosphate. Presse Med, 55: 1201–1203.Google Scholar
  15. Bonney, R. J., Gery, I., Lin, T.-Y., Meyenhoffer, M. R., Acevedo, W., and Davies, P. 1978. Mononuclear phagocytes from carrageenan-induced granulomas. J. Exp. Med., 148: 261–215.PubMedCrossRefGoogle Scholar
  16. Borgers, M., Schaper, J., and Schaper, W. 1971. Adenosine-producing sites in the mammalian heart: A cytochemical study. J. Mol. Cell Cardiol, 5: 287–296.CrossRefGoogle Scholar
  17. Brashear, R. E., and Ross, J. C. 1969. Disappearance of adenosine diphosphate in vivo. J. Lab. Clin. Med, 73: 54–59.PubMedGoogle Scholar
  18. Bronikowski, T. A., Linehan, J. H., and Dawson, C. A. 1980. A mathematical analysis of the influence of perfusion heterogeneity on indicator extraction. Math. Biosci, 52: 27–51.CrossRefGoogle Scholar
  19. Brown, P. R., Krstulovic, A. M., and Hartwick, R. A. 1980. Current state of the art in the HPLC analysis of free nucleotides, nucleosides, and bases in biological fluids. Adv. Chromatogr, 18: 101–138.PubMedGoogle Scholar
  20. Burger, R. M., and Lowenstein, J. M. 1970. Preparation and properties of 5’-nucleotidase from smooth muscle of small intestine. J. Biol. Chem, 245: 6274–6280.PubMedGoogle Scholar
  21. Burger, R. M., and Lowenstein, J. M. 1975. 5’-Nucleotidase from smooth muscle of small intestine and from brain. Inhibition by nucleotides. Biochemistry, 14: 2362–2366.Google Scholar
  22. Burnstock, G., Cusack, N. J., Hills, J. M., MacKenzie, I., and Meghji, P. 1983. Studies on the stereoselectivity of the P2-purinoceptor. Br. J. Pharmacol, 79: 907–913.PubMedCrossRefGoogle Scholar
  23. Carraway, K. L., Fogle, D. D., Chestnut, R. W., Huggins, J. W., and Carraway, C. A. C. 1976. Ecto- enzymes of mammary gland and its tumors. Lectin inhibition of 5’-nucleotidase of the 13762 rat mammary ascites carcinoma. J. Biol. Chem, 257: 6173–6178.Google Scholar
  24. Carraway, C. A. C., Corrado, F. J., IV, Fogle, D. D., and Carraway, K. L. 1980. Ecto-enzymes of mammary gland and its tumours. Ca2+ or Mg2+ stimulated adenosine triphosphatase and its perturbation by concanavalin A. Biochem. J, 797: 45–51.Google Scholar
  25. Catravas, J. D., and White, R. E. 1984. Kinetics of pulmonary angiotensin converting enzyme and 5’-nucleotidase in vivo. J. Appl. Physiol, 57.Google Scholar
  26. Chakravarty, N., and Echetebu, Z. 1978. Plasma membrane adenosine triphosphatases in rat peritoneal mast cells and macrophages—the relation of the mast cell enzyme to histamine release. Biochem. Pharmacol, 27: 1561–1569.PubMedCrossRefGoogle Scholar
  27. Chakravarty, N., and Nielsen, E. H. 1981. Adenosine triphosphatase in nonsecreting and secreting mast cells. Agents Actions, 77: 67–69.CrossRefGoogle Scholar
  28. Chambers, D. A., Salzman, E. W., and Neri, L. L. 1967. Characterization of “ecto-ATPase” of human blood platelets. Arch. Biochem. Biophys, 779: 173–178.CrossRefGoogle Scholar
  29. Chang, K-J., and Cuatrecasas, P. 1974. Adenosine triphosphate-dependent inhibition of insulin-stimulated glucose transport in fat cells. Possible role of membrane phosphorylation. J. Biol. Chem, 249: 3170–3180.PubMedGoogle Scholar
  30. Chatteijee, S. K., Bhattacharya, M., and Barlow, J. B., 1979. A simple specific radiometric assay for 5’-nucleotidase. Anal. Biochem, 95: 497–506.CrossRefGoogle Scholar
  31. Chelliah, R., and Bakhle, Y. S. 1983. The fate of adenine nucleotides in the pulmonary circulation of isolated lung. Quart. J. Exp. Physiol, 65: 289–300.Google Scholar
  32. Chesterman, C. N., Ager, A., and Gordon, J. L. 1983. Regulation of prostaglandin production and ectoenzyme activities in cultured aortic endothelial cells. J. Cell. Physiol, 776: 45–50.CrossRefGoogle Scholar
  33. Coetzee, G. A., and Gevers, W. 1977. 5-Bromo-2’-deoxyuridine-stimulated calcium ion- or magnesium ion- dependent ecto-(adenosine triphosphatase) activity of cultured hamster cardiac cells. Biochem. J, 164: 645–652.Google Scholar
  34. Cooper, D. H., and Stanworth, D. R. 1976. Characterisation of calcium-ion-activated adenosine triphosphatase in the plasma membrane of rat mast cells. Biochem. J, 756: 691–700.Google Scholar
  35. Cooper, D. R., Lewis, G. P., Lieberman, G. E., Webb, H., and Westwick, J. 1979. ADP metabolism in vascular tissue, a possible thromboregulatory mechanism. Thromb. Res, 74: 910–914.Google Scholar
  36. Crane, R. K., and Lipmann, R. 1953. The effect of arsenate on aerobic phosphorylation. J. Biol. Chem, 207: 235–243.Google Scholar
  37. Crutchley, D. J., Eling, T. E., and Anderson, M. W., 1978. AD Pase activity of isolated perfused rat lung. Life Sci, 22: 1413–1420.PubMedCrossRefGoogle Scholar
  38. Crutchley, D. J., Ryan, U. S., and Ryan, J. W. 1980. Effects of aspirin and dipyridamole on the degradation of adenosine diphosphate by cultured cells derived from bovine pulmonary artery. J. Clin. Invest, 66: 29–35.PubMedCrossRefGoogle Scholar
  39. Cummins, J., and Hyden, H. 1962. Adenosine triphosphate levels and adenosine triphosphatases in neurons, glia and neuronal membranes of the vestibular nucleus. Biochim. Biophys. Acta, 60: 271–283.PubMedCrossRefGoogle Scholar
  40. Cusack, N. J., Pearson, J. D., and Gordon, J. L. 1983. Stereoselectivity of ectonucleotidases on vascular endothelial cells. Biochem. J, 274: 975–981.Google Scholar
  41. De Bruyne, I. 1983. Inorganic phosphate determination: Colorimetric assay based on the formation of a rhodamine B-phosphomolybdate complex. Anal. Biochem, 730: 454–460.Google Scholar
  42. De Pierre, J. W. and Karnovsky, M. L. 1974a. Ecto-enzy me of granulocytes: 5’-nucleotidase. Science, 753: 1096–1098.Google Scholar
  43. De Pierre, J. W., and Karnovsky, M. L. 1974b. Ecto-enzymes of the guinea pig polymorphonuclear leukocyte. I Evidence for an ecto-adenosine monophosphatase, -adenosine triphosphatase, and -p-nitrophenylphosphatase. J. Biol. Chem, 249: 7111–7120.Google Scholar
  44. De Pierre, J. W., and Karnovsky, M. L. 1974c. Ecto-enzymes of the guinea pig polymorphonuclear leukocyte. II. Properties and suitability as marker for the plasma membrane. J. Biol. Chem, 249: 7121–7129.Google Scholar
  45. Dieterle, Y., Ody, C., Ehrensburger, A., Stalder, H., and Junod, A. F. 1978. Metabolism and uptake of adenosine triphosphate and adenosine by porcine aortic and pulmonary endothelial cells and fibroblasts in culture. Circ. Res, 42: 869–876.PubMedCrossRefGoogle Scholar
  46. Dipple, I. M., Gordon, L. M., Houslay, M. D. 1982. The activity of 5’-nucleotidase in liver plasma membranes is affected by the increase in bilayer fluidity achieved by anionic drugs but not by cationic drugs. J. Biol. Chem, 257: 1811–1815.PubMedGoogle Scholar
  47. Dornand, J., Bonnafous, J.-C., Gavach, C., and Mani, J.-C. 1979. 5’-Nucleotidase-facilitatedadenosine transport by mouse lymphocytes. Biochimie, 61: 973–977.Google Scholar
  48. Dosne, A. M., Legrand, C., Bauvois, B., Bodevin, E., and Caen, J. P. 1978. Comparative degradation of adenylnucleotides by cultured endothelial cells and fibroblasts. Biochem. Biophys. Res. Com- mun, 85: 183–189.CrossRefGoogle Scholar
  49. Dunham, E. T., and Glynn, I. M. 1961. Adenosine triphosphatase activity and the active movement of alkali metal ions. J. Physiol, 756: 274–293.Google Scholar
  50. Dunkley, C R., Manery, J. F., and Dryden, E. E. 1966. The conversion of AMP to IMP by muscle surface enzymes. J. Cell Physiol, 65: 241–248.CrossRefGoogle Scholar
  51. Edwards, M. J., and Maguire, M. H. 1970. Purification and properties of rat heart 5’-nucleotidase. Mol. Pharmacol 6: 641–648.PubMedGoogle Scholar
  52. Essner, E., Novikoff, A. B., and Masek, B. 1958. Adenosinetriphosphatase and 5’-nucleotidase activities in the plasma membrane of liver cells as revealed by electron microscopy. J. Biophys. Biochem. Cytol, 4: 711–716.PubMedCrossRefGoogle Scholar
  53. Evans, W. H. 1974. Nucleotide pyrophosphatase, a sialoglycoprotein located on the hepatocyte surface. Nature, 250: 391–394.PubMedCrossRefGoogle Scholar
  54. Evans, W. H., and Gurd, J. W. 1973. Properties of a 5’-nucleotidase purified from mouse liver plasma membranes. Biochem. J, 733: 189–199.Google Scholar
  55. Fiske, C. H. 1934. The nature of the depressor substance of the blood. Proc. Natl. Acad. Sci. USA 20: 25–21.PubMedCrossRefGoogle Scholar
  56. Fiske, C. H., and Subbarow, Y. 1925. The colorimetric determination of phosphorus. J. Biol. Chem, 66: 375–400.Google Scholar
  57. Fleit, H., Conklyn, M., Stebbins, R. D., and Silber, R. 1975. Function of 5’-nucleotidase in the uptake of adenosine from AMP by human lymphocytes. J. Biol. Chem, 250: 8889–8892.PubMedGoogle Scholar
  58. Fox, R. M., Piddington, S. K., and Tripp, E. H. 1981. Ecto-adenosine triphosphatase deficiency in cultured human T and null leukemic lymphocytes. A biochemical basis for thymidine sensitivity. J. Clin. Invest, 65: 544–552.CrossRefGoogle Scholar
  59. Frick, G. P., and Lowenstein, J. M. 1976. Studies of 5’-nucleotidase in the perfused rat heart. J. Biol. Chem, 257: 6372–6378.Google Scholar
  60. Frick, G. P., and Lowenstein, J. M. 1978. Vectorial production of adenosine by 5’-nucleotidase in the perfused rat heart. J. Biol. Chem, 255: 1240–1244.Google Scholar
  61. Ganóte, C, E., Rosenthal, A. S., Moses, H. L., and Tice, L. W. 1969. Lead and phosphate as sources of artifact in nucleoside phosphatase histochemistry. J. Histochem. Cytochem, 77: 641–650.CrossRefGoogle Scholar
  62. Gibson, W. B., and Drummond, G. I. 1972. Properties 5’-nucleotidase from avian heart. Biochemistry, 77: 223–229.CrossRefGoogle Scholar
  63. Glasgow, J. G., Schade, R., and Pitlick, F. A. 1978. Evidence that ADP hydrolysis by human cells is related to thrombogenic potential. Thromb. Res, 73: 255–266.CrossRefGoogle Scholar
  64. Gomori, G. 1941, The distribution of phosphatase in normal organs and tissues. J. Cell Comp. Physiol, 77: 71–83.CrossRefGoogle Scholar
  65. Gurd, J. W., and Evans, W. H., 1974. Distribution of liver plasma membrane 5’-nucleotidase as indicated by its reaction with anti-plasma membrane serum. Arch. Biochem. Biophys, 764: 305–311.CrossRefGoogle Scholar
  66. Gutensohn, W. 1980. Human 5’-nucleotidase. Properties and characterisation of the enzyme from placenta, lymphocytes and lymphoblastoid cells in culture. Adv. Exp. Med. Biol, 122B: 295–298.CrossRefGoogle Scholar
  67. Habliston, D. L., Ryan, U.S., and Ryan J. W. 1978. Endothelial cells degrade adenosines-diphosphate. J. Cell Biol, 79: 206a.Google Scholar
  68. Harlan, J, de Chatelet, L. R., Iverson, D. B., and McCall, C. E. 1977. Magnesium-dependent adenosine triphosphatase as a marker enzyme for the plasma membrane of human polymorphonuclear leukocytes. Infect. Immun, 75: 436–443.Google Scholar
  69. Hayes, L. W., Goguen, C. A., Stevens, A. L., Magargal, W. W., and Slakey, L. L. 1979. Enzyme activities in endothelial cells and smooth muscle cells from swine aorta. Proc. Natl. Acad. Sci. USA, 76: 2532–2535.PubMedCrossRefGoogle Scholar
  70. Hellewell, P. G., and Pearson, J. D. 1983. Metabolism of circulating adenosine by the porcine isolated perfused lung. Circ. Res, 53: 1–7.PubMedCrossRefGoogle Scholar
  71. Herbert, E. 1956. A study of the liberation of orthophosphate from adenosine triphosphate by the stromata of human erythrocytes. J. Cell Comp. Physiol, 47: 11–36.CrossRefGoogle Scholar
  72. Heyns, A. du P., Badenhorst, C. J., and Retief, F. P. 1977. ADPase activity of normal and atherosclerotic human aorta intima. Thromb. Haem, 37: 429–435.Google Scholar
  73. Hoff, H. F., and Graf, J. 1966. An electron microscopy study of phosphatase activity in the endothelial cells of rabbit aorta. J. Histochem. Cytochem, 74: 719–724.CrossRefGoogle Scholar
  74. Hoffman, P. C., and Okita, G. T. 1965. Penetration of ATP into the myocardium. Proc. Soc. Exp. Biol. Med, 779: 573–576.Google Scholar
  75. Ipata, P. L. 1968. Sheep brain 5’-nucleotidase. Some enzyme properties and allosteric inhibition by nucleoside triphosphates. Biochemistry, 7: 507–515.PubMedCrossRefGoogle Scholar
  76. Itaya, K., and Ui, M. 1966. A new micromethod for the colorimetric determination of inorganic phosphate. Clin. Chim. Acta, 74: 361–366.CrossRefGoogle Scholar
  77. Jaffe, E. K., Nick, J., and Cohn, M. 1982. Reactivity and metal-dependent stereospecificity of the phosphorothioate analogs of ADP and ATP and reactivity of Cr(III)ATP in the 3-phosphoglycerate kinase reaction. J. Biol. Chem, 257: 7650–7656.PubMedGoogle Scholar
  78. Jarrett, L., and Smith, R. M. 1974. Stimulation of adipocyte plasma membrane magnesium-stimulated adenosine triphosphatase by insulin and concanavalin A. J. Biol. Chem, 249: 5195–5199.Google Scholar
  79. Kalckar, H. M. 1947. Differential spectrophotometry of purine compounds by means of specific enzymes. II. Determination of adenine compounds. J. Biol. Chem, 167: 445–459.PubMedGoogle Scholar
  80. Kang, E. S., Gates, R. E., Chiang, T. M., and Kang, A. H. 1979. Ectoprotein kinase activity of the isolated rat adipocyte. Biochem. Biophys. Res. Commun, 50: 769–778.CrossRefGoogle Scholar
  81. Karasaki, S., Simard, A., and Lamiraude, G. de. 1977. Surface morphology and nucleoside phosphatase activity of rat liver epithelial cells during oncogenic transformation in vitro. Center Res, 37: 3516–3525.Google Scholar
  82. Kubler, D., Pyerin, W., and Kinzel, V. 1982. Protein kinase activity and substrates at the surface of intact Hela cells. J. Biol. Chem, 257: 322–329.PubMedGoogle Scholar
  83. Kubler, D., Pyerin, W., Burow, E., and Kinzel, V. 1983. Substrate-effected release of surface located protein kinase from intact cells. Proc. Natl. Acad. Sci. USA, 80: 4021–4025PubMedCrossRefGoogle Scholar
  84. Leake, D. S., Lieberman, G. S., and Peters, T. J. 1983. Properties and subcellular localization of adenosine diphosphatase in arterial smooth muscle cells in culture. Biochim. Biophys. Acta, 762: 52–51.PubMedCrossRefGoogle Scholar
  85. Lernmark, A., Soderberg, L.-A., Taljedal, I.-B. 1979. 5’-AMP hydrolysis by suspensions and homogenates of pancreatic islet cells from normal and cortizone-treated rats. Histochemistry, 63: 155–161.Google Scholar
  86. Lieberman, G. E., Lewis, G. P., and Peters, T. J. 1977. A membrane-bound enzyme in rabbit aorta capable of inhibiting adenosine-diphosphate-induced platelet aggregation. Lancet, 2: 330–332.PubMedCrossRefGoogle Scholar
  87. Lieberman, G. E., Leake, D. S., and Peters, T. J. 1982. Subcellular localization of adenosine di-phosphatase in cultured pig arterial endothelial cells. Thromb. Haem, 47: 249–253.Google Scholar
  88. Lowenstein, J. M., Yu, M.-K., and Naito, Y. 1983. Regulation of adenosine metabolism by 5’-nu- cleotidases. In: Regulatory Function of Adenosine, pp. 117–131. Ed. by Berne, R. M., Rail, T. W., and Rubio, R. Nijhoff, The Hague.CrossRefGoogle Scholar
  89. Manery, J. F., and Dryden, E. E. 1979. Ecto-enzymes concerned with nucleotide metabolism. In: Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides, pp. 323–339. Ed. by Baer, H. P., and Drummond, G. I. Raven Press, New York.Google Scholar
  90. Marchesi, V. T., and Barrnett, R. J. 1963. The demonstration of enzymatic activity in pinocytic vesicles of blood capillaries with the electron microscope. J. Cell Biol, 77: 547–556.CrossRefGoogle Scholar
  91. Martin, J. B., and Doty, D. M. 1949. Determination of inorganic phosphate. Modification of isobutyl alcohol precedure. Anal. Chem, 27: 965–967.CrossRefGoogle Scholar
  92. Mastro, A. M., and Rozengurt, E. 1976. Endogenous protein kinase in outer plasma membrane of cultured 3T3 cells. J. Biol. Chem, 257: 7899–7906.Google Scholar
  93. Medzihradsky, F., Lin, H.-L., and Marks, M. J. 1975. Drug inhibitable ecto-ATPase in leukocytes. Life Sci, 76: 1417–1428.CrossRefGoogle Scholar
  94. Merisko, E. M., Ojakian, G. K., and Widnell, C. C. 1981. The effects of phospholipids on the properties of hepatic 5’-nucleotidase. J. Biol. Chem, 256: 2983–1993.Google Scholar
  95. Montague, D. J., Peters, T. J. and Baum, H. 1984. Studies on the nature of adenosine diphosphatase activity from rat liver mitochondria. Biochim. Biophys. Acta, 777: 9–15.CrossRefGoogle Scholar
  96. Morahan, P. S., Rozner, M. A., and Jessee, E. J. 1982. Effect of elicitation on peritoneal macrophage subpopulations: Size distributions, ectoenzyme phenotypes and antitumor activity. Int. J. Cancer, 30: 787–194.PubMedCrossRefGoogle Scholar
  97. Naito, Y., and Lowenstein, J. M. 1981. 5’-Nucleotidase from rat heart. Biochemistry, 20: 5188–5194.Google Scholar
  98. Nakatsu, K., and Drummond, G. I. 1972. Adenylate metabolism and adenosine formation in the heart. Am. J. Physiol, 223: 1119–1127.PubMedGoogle Scholar
  99. Nees, S., and Gerlach, E. 1983. Adenine nucleotide and adenosine metabolism in cultured coronary endothelial cells: Formation and release of adenine compounds and possible functional implications. In: Regulatory Functions of Adenosine, pp. 347–360. Ed. by Berne, R. M., Rail, T. W., and Rubio, R. Nijhoff, The Hague.CrossRefGoogle Scholar
  100. Newby, A. C. 1980. Role of adenosine deaminase, ecto-(5’-nucleotidase) and ecto-(non-specific phosphatase) in cyanide-induced adenosine monophosphate catabolism in rat polymorphonuclear leucocytes. Biochem. J, 756: 907–918.Google Scholar
  101. Newby, A. C., and Sala, G. B. 1982. A new procedure for haptenizing adenosine leading to a more specific radioimmunoassay method. Biochem. J, 205: 603–610.Google Scholar
  102. Newby, A. N., Luzio, J. P., and Hales, CN. 1975. The properties and extracellular location of 5’- nucleotidase of the rat fat-cell plasma membrane. Biochem. J, 146: 625–633.PubMedGoogle Scholar
  103. Norman, G. A., Follett, M. J. and Hector, D. A. 1974. Quantitative thin-layer chromatography of ATP and the products of its degradation in meat tissues. J. Chromatogr, 90: 105–111.PubMedCrossRefGoogle Scholar
  104. Novogrodsky, A. 1972. Concanavalin A stimulation of rat lymphocyte ATPase. Biochim. Biophys. Acta, 226: 343–349.Google Scholar
  105. Ohnishi, T., and Yamaguchi, K. 1978. Effects of db-cAMP and theophylline on cell surface adenosine triphosphatase activity in cultured hepatoma cells, Exp. Cell. Res, 116: 261–268.PubMedCrossRefGoogle Scholar
  106. Olsson, R. A., Davis, C. J., Gentry, M. K., and Vomacka, R. B. 1978. A radiological binding assay for adenosine in tissue extracts. Anal. Biochem, 55: 132–138.CrossRefGoogle Scholar
  107. Pearson, J. D., and Gordon, J. L. 1979. Vascular endothelial and smooth muscle cells in culture selectively release adenine nucleotides. Nature, 281: 384–386.PubMedCrossRefGoogle Scholar
  108. Pearson, J. D., Carleton, J. S., Hutchings, A., and Gordon, J. L. 1978. Uptake and metabolism of adenosine by pig aortic endothelial and smooth muscle cells in culture. Biochem. J, 170: 265–271.PubMedGoogle Scholar
  109. Pearson, J. D., Carleton, J. S., and Gordon J. L. 1980. Metabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smooth muscle cells in culture. Biochem. J, 790: 421–429.Google Scholar
  110. Pearson, J. D., Hellewell, P.G., and Gordon, J. L. 1983, Adenosine uptake and adenine nucleotide metabolism by vascular endothelium. In: Regulatory Function of Adenosine, pp. 333–346. Ed. by Berne, R. M., Rail, T. W., and Rubio, R. Nijhoff, The Hauge.CrossRefGoogle Scholar
  111. Pull, I., and Mcllwain, H. 1972. Metabolism of [14C]adenine and derivatives by cerebral tissues, superfused and electrically stimulated. Biochem. J, 726: 965–973.Google Scholar
  112. Randerath, K., and Randerath, E. 1964. Ion-exchange chromatography of nucleotides on poly-(ethy-leneimine)-cellulose thin layers. J. Chromatogr, 76: 111–125.Google Scholar
  113. Remold-O’Donnell, E. 1978. Protein kinase activity associated with the surface of guinea pig macrophages. J. Exp. Med, 745: 1099–1104.CrossRefGoogle Scholar
  114. Rickaby, D. A., Dawson, C. A., and Linehan, J. M. 1982. Influence of blood and plasma flow rate on kinetics of serotonin uptake by lungs. J. Appl. Physiol, 53: 677–684.PubMedGoogle Scholar
  115. Riemer, B. L., and Widnell, C. C. 1975. The demonstration of a specific 5’-nucleotidase activity in rat tissues. Arch. Biochem. Biophys, 777: 343–347.CrossRefGoogle Scholar
  116. Riordan, J. R., and Slavik, M. 1974. Interaction of lectins with membrane glycoproteins. Effects of concanavalin A on 5’-nucleotidase. Biochim. Biophys. Acta, 373: 356–360.PubMedCrossRefGoogle Scholar
  117. Ronca-Testoni, S., and Borghini, F. 1982. Degradation of perfused adenine compounds up to uric acid in isolated rat heart. J. Mol. Cell. Cardiol, 74: 177–180.CrossRefGoogle Scholar
  118. Ronquist, G. 1968. Formation of extracellular adenosine triphosphate by human erythrocytes. Acta Physiol. Scand, 74: 594–605.PubMedCrossRefGoogle Scholar
  119. Ronquist, G., and Agren, G. K., 1975, A Mg2+ and Ca2+ stimulated adenosine triphosphatase at the outer surface of Ehrlich ascites tumor cells. Cancer Res, 15: 1402–1406.Google Scholar
  120. Rothstein, A., and Meier, R. 1948. The relationship of the cell surface to metabolism I Phosphatases in the cell surface of living yeast cells. J. Comp. Cell Physiol, 32: 11–95.Google Scholar
  121. Rowe, M., de Gast, G. C., Platts-Mills, T. A. E., Asherson, G. L., Webster, A. D. B., and Johnson, S. M. 1979. 5’-nucleotidase of B and T lymphocytes isolated from peripheral blood. Clin. Exp. Immunol, 36: 91–101.Google Scholar
  122. Rozengurt, E., and Heppel, L. A. 1979. Reciprocal control of membrane permeability of transformed cultures of mouse liver cells by external and internal ATP. J. Biol. Chem, 254: 708–714.PubMedGoogle Scholar
  123. Ryan, J. W., and Ryan, U. S. 1984. Endothelial surface enzymes and the dynamic processing of plasma substrates. Int. Rev. Exp. Pathol, 26: 1–43.PubMedCrossRefGoogle Scholar
  124. Ryan, J. W., and Smith, U. 1971. Metabolism of adenosine 5’-monophosphate during circulation through the lungs. Trans. Assoc. Am. Physicians, 54: 297–306.Google Scholar
  125. Sabatini, D. D., Bensch, K., and Barrnett, R. J. 1963. Cytochemistry and electron microscopy. The preservation of cellular structure and enzymatic activity by aldehyde fixation. J. Cell Biol, 77: 19–58.CrossRefGoogle Scholar
  126. Salem, N. Jr., Lauter, C. J., and Trams, E. G. 1981. Selective chemical modification of plasma membrane ectoenzymes. Biochim. Biophys. Acta, 647: 366–376.Google Scholar
  127. Sasaki, T., Abe, A., and Sakagami, T. 1983 Ecto-5’-nucleotidase does not catalyze vectorial production of adenosine in the perfused rat liver. J. Biol. Chem, 258: 6947–6951.PubMedGoogle Scholar
  128. Sato, T., Kuninaka, A., Yoshino, H., and Ui, M. 1982. A sensitive radioimmunoassay for adenosine in biological samples. Anal. Biochem, 727: 409–420.CrossRefGoogle Scholar
  129. Schräder, J., Nees, S., and Gerlach, E. 1978. Radioimmunoassay for adenosine in biological samples. Pflügers Arch, 378: 167–111.PubMedCrossRefGoogle Scholar
  130. Schräder, J., Thompson, C. I., Hiendlmayer, G., and Gerlach, E. 1982. Role of purines in acetyl- choline-induced coronary vasodilation. J. Mol. Cell Cardiol, 74: 427–430.CrossRefGoogle Scholar
  131. Schütz, W., Schräder, J., and Gerlach, E. 1981. Different sites of adenosine formation in the heart. Am. J. Physiol, 240: H963–H970.PubMedGoogle Scholar
  132. Sen, A. K., and Post, R. L. 1964. Stoichiometry and localization of adenosine triphosphate-dependent sodium and potassium transport in the erythrocyte. J. Biol. Chem, 239: 345–352.PubMedGoogle Scholar
  133. Siddle, K., Bailyes, E. M., and Luzio, J. P. 1981. A monoclonal antibody inhibiting rat liver 5’- nucleotidase. FEBS Lett, 725: 103–107.CrossRefGoogle Scholar
  134. Smith, G. P., and Peters, T. J. 1981. Subcellular localization and properties of adenosine diphosphatase activity in human polymorphonuclear leukocytes. Biochim. Biophys. Acta, 673: 234–242.PubMedCrossRefGoogle Scholar
  135. Smith, G. P., and Peters, T. J. 1982. The release of granule components from human polymorphon-uclear leukocytes in response to both phagocytic and chemical stimuli. Biochim. Biophys. Acta, 779: 304–308.CrossRefGoogle Scholar
  136. Smith, G. P., Smith, G. D., and Peters, T. J. 1980a. Subcellular localization and properties of rat liver adenosine diphosphatase. Biochem. J, 792: 527–535.Google Scholar
  137. Smith, G. P., Smith, G. D., and Peters, T. J. 1980b. A direct, rapid, radioassay for adenosine di-phosphatase. Clin. Chim. Acta, 707: 287–291.CrossRefGoogle Scholar
  138. Smith, G. P., Shah, T., Webster, A. D. B., and Peters, T. J. 1981. Studies on the kinetic properties and subcellular localization of adenosine diphosphatase activity in human peripheral blood lymphocytes. Clin. Exp. Immunol, 46: 321–326.PubMedGoogle Scholar
  139. Smith, G. P., Shah, T., Webster, A. D. B., and Peters, T. J. 1982. Studies on the kinetic properties and subcellular localization of adenosine nucleotide phosphatases in peripheral blood lymphocytes from control subjects and patients with common variable primary hypogammaglobulinaemia. Clin. Exp. Immunol, 49: 393–400.PubMedGoogle Scholar
  140. Smith, U., and Ryan, J. W. 1970. An electron microscopic study of the vascular endothelium as a site for bradykinin and ATP inactivation in rat lung. Adv. Exp. Med. Biol, 8: 249–262.CrossRefGoogle Scholar
  141. Smolen, J. E., and Karnovsky, M. L. 1980. Effect of surface modifiers on an ectoenzyme: Granulocyte 5’-nucleotidase. Infect. Immun, 25: 475–485.Google Scholar
  142. Smolen, J. E., and Weissmann, G. 1978. Mg2+-ATPase as a membrane ecto-enzyme of human gran-ulocytes. Biochim. Biophys. Acta, 572: 525–538.Google Scholar
  143. Sommarin, M., Henriksson, T., and Jergil, B. 1981. Cyclic AMP-dependent protein phosphorylation on the surface of rat hepatocytes. FEBS Lett, 727: 285–289.Google Scholar
  144. Stanley, K. K., Edwards, M. R., and Luzio, L. P. 1980. Subcellular distribution and movement of 5’-nucleotidase in rat cells. Biochem. J, 186: 59–69.PubMedGoogle Scholar
  145. Stefanovic, V., Mandel, P., and Rosenberg, A. 1975. Concanavalin A inhibition of ecto-5’-nucleotidase of intact cultured C6 glioma cells. J. Biol. Chem, 250: 7081–7083.PubMedGoogle Scholar
  146. Stefanovic, V., Mandel, P. and Rosenberg, A. 1976a. Properties of ecto-(inorganic) pyrophosphatase of nervous system cells in culture. Activation upon partial release of sialic acid from the cell surface. J. Biol. Chem, 257: 493–497.Google Scholar
  147. Stefanovic, V., Mandel, P., and Rosenberg, A. 1976b. Ecto-5’-nucleotidase of intact cultured C6 rat glioma cells. J. Biol. Chem, 257: 3900–3905.Google Scholar
  148. Stefanovic, V., Giesielski-Treska, J., and Mandel, P. 1977. Neuroblasts-glia interaction in tissue culture as evidenced by the study of ectoenzymes. Ecto-ATPase activity of mouse neuroblastoma cells. Brain Res, 722: 313–323.CrossRefGoogle Scholar
  149. Sullivan, J. M., and Alpers, J. B. 1971. In vitro regulation of rat heart 5’-nucleotidase by adenosine nucleotides and magnesium. J. Biol. Chem, 246: 3057–3063.PubMedGoogle Scholar
  150. Sun, A. S., Aggarwal, B. B., and Packer, L. 1975. Enzyme levels of normal human cells: aging in culture. Arch. Biochem. Biophys, 770: 1–11.CrossRefGoogle Scholar
  151. Sun, A. S., Alvarez, L. J., Reinach, P. S., and Rubin, E. 1979. 5’-Nucleotidase levels in normal and virus-transformed cells. Implications for cellular aging in vitro. Lab. Invest, 4: 1–4.Google Scholar
  152. Sun, A. S., Holland, J. F., Ohnuma, T., and Slankard-Chahinian, M 1982. 5’-Nucleotidase activity in permanent human lymphoid cell lines. Implication for cell proliferation and aging in vitro. Biochim. Biophys. Acta, 714: 530–535.Google Scholar
  153. Trams, E. G., and Lauter, C. J. 1974. On the sidedness of plasma membrane enzymes. Biochim. Biophys. Acta, 354. 180–197.Google Scholar
  154. Trams, E. G., Kauffman, H., and Burnstock, G. 1980. A proposal for the role of ecto-enzymes and adenylates in traumatic shock. J. Theoret. Biol, 57: 609–621.CrossRefGoogle Scholar
  155. Trams, E. G., Lauter, C. J., Salem, N., Jr., and Heine, E. 1981. Exfoliation of membrane ectoenzymes in the form of microvesicles. Biochim. Biophys. Acta, 654: 63–10.Google Scholar
  156. Uusitalo, R. J., and Karnovsky, M. J. 1977a. Surface localization of 5’-nucleotidase on the mouse lymphocyte. J. Histochem. Cytochem, 25: 87–96.PubMedCrossRefGoogle Scholar
  157. Uusitalo, R. J., and Karnovsky, M. J. 1977b. 5’-Nucleotidase in different populations of mouse lymphocytes. J. Histochem. Cytochem, 25: 97–103.Google Scholar
  158. Van Belle, H. 1972. Kinetics and inhibition of alkaline phosphatases from canine tissues. Biochim. Biophys. Acta, 289: 158–168.PubMedCrossRefGoogle Scholar
  159. Van den Berghe, G., Van Pottlesburghe, C., and Hers, H.-G. 1977. A kinetic study of the soluble 5’- nucleotidase of rat liver. Biochem. J, 762: 611–616.Google Scholar
  160. Wachstein, M., and Meisel, E. 1957. Histochemistry of hepatic phosphatases at a physiologic pH. Am. J. Clin. Pathol 27: 13–23.PubMedGoogle Scholar
  161. Wallach, D. F. H., and Ullrey, D. 1962. The hydrolysis of ATP and related nucleotides by Ehrlich ascites carcinoma cells. Cancer Res, 22: 228–234.PubMedGoogle Scholar
  162. Wattiaux-de Coninck, S., and Wattiaux, R. 1969. Nucleosidediphosphatase activity in plasma membrane of rat liver. Biochim. Biophys. Acta, 183: 118–128.CrossRefGoogle Scholar
  163. Weil-Malherbe, H., and Green, R. H. 1951. The catalytic effect of molybdate on the hydrolysis of organic phosphate bonds. Biochem. J, 49: 286–292.PubMedGoogle Scholar
  164. Weiss, B., and Sachs, L. 1977. Differences in surface membrane ecto-ATPase and ecto-AMPase in normal and malignant cells. J. Cell. Physiol, 93: 183–188.PubMedCrossRefGoogle Scholar
  165. Widnell, C. C. 1972. Cytochemical localization of 5’-nucleotidase in subcellular fractions isolated from rat liver. I. The origin of 5’-nucleotidase activity in microsomes. J. Cell Biol, 52: 542–558.PubMedCrossRefGoogle Scholar
  166. Widnell, C. C. 1974. Purification of rat liver 5’-nucleotidase as a complex with sphingomyelin. Methods Enzymol, 325: 368–374.CrossRefGoogle Scholar
  167. Widnell, C. C., Schneider, Y.-J., Pierre, B., Baudhuin, P., and Trouet, A. 1982. Evidence for a continual exchange of 5’-nucleotidase between the cell surface and cytoplasmic membranes in cultured rat fibroblasts. Cell, 25: 61–70.CrossRefGoogle Scholar
  168. Williamson, J. R., and De Pietro, D. L. 1965. Evidence for extracellular enzymic activity of the isolated perfused rat heart. Biochem. J, 95: 226–232.PubMedGoogle Scholar
  169. Wilson, E. J., and Wormall, A. 1949. Studies on suramin (Antrypol:Bayer 205). Further observations on the combination of the drug with protein. Biochem. J, 45: 224–231.Google Scholar
  170. Wilson, P. D., Rustin, G. J. S., Smith, G. P., and Peters, T. J. 1981a. Electron microscopic cytochemical localization of nucleoside phosphatases in normal and chronic granulocytic leukaemic human neutrophils. Histochem. J, 73: 73–84.CrossRefGoogle Scholar
  171. Wilson, P. D., Summerhayes, I. C., Hodges, G. M., Trejdosiewicz, L. K., and Nathrath, W. J. 1981b. Cytochemical markers of bladder carcinogenesis. Histochem. J, 73: 989–1007.CrossRefGoogle Scholar
  172. Wilson, P. D., Lieberman, G. E., and Peters, T. J., 1982. Ultrastructural localisation of adenosine diphosphatase activity in cultured aortic endothelial cells. Histochem. J, 74: 215–219.CrossRefGoogle Scholar
  173. Worku, Y., and Newby, A. C. 1982. Nucleoside exchange catalysed by the cytoplasmic 5’-nucleotidase. Biochem. J, 205: 502–510.Google Scholar
  174. Worku, Y. and Newby, A. C. 1983. The mechanism of adenosine production inside rat polymorphonuclear leucocytes. Biochem. J, 274: 325–330.Google Scholar
  175. Zachowski, A., Aubry, J., Jonkman-Bark, G., and Lelievre, L. 1977. Localization of the catalytic site of 5’-nucleotidase at the inner surface of murine plasmocytoma plasma membranes. FEBS Lett, 75: 197–200.PubMedCrossRefGoogle Scholar
  176. Zachowski, A., Evans, W. H., and Paraf, A. 1981. Immunological evidence that plasma-membrane 5’-nucleotidase is a transmembrane protein. Biochim. Biophys. Acta, 644: 121–126.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • J. D. Pearson
    • 1
  1. 1.Section of Vascular BiologyMRC Clinical Research CentreHarrow, MiddlesexUK

Personalised recommendations