Advertisement

Criteria for the Involvement of Adenosine and Adenine Nucleotides in Nonadrenergic, Noncholinergic Transmission

  • Lowie P. Jager
  • Adriaan den Hertog

Abstract

In his synthetic overview of the physiology of synaptic transmission, Eccles (1964) summarized the criteria put forward up to then. Since that time, knowledge of neurohumoral transmission has vastly increased, but Eccles’s criteria still provide a good starting point for an appraisal of data and methods used in research concerning the involvement of “purines” in neurotransmission. However, there is a need to incorporate into these five criteria the significant new concepts concerning neurohumoral transmission that have emerged during the past two decades. Among these are:
  • Feedback regulation to the presynaptic terminal by the released neuro-transmitter or by substances released simultaneously.

  • Histochemical identification of nerves based on the neurotransmitter released.

  • Release of more than one functional neurotransmitter from one nerve terminal.

Keywords

Vasoactive Intestinal Polypeptide Adenine Nucleotide Field Stimulation Postsynaptic Action Scorpion Venom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baer, H. P., and Frew, R. 1979. Relaxation of guinea-pig fundic strip by adenosine, adenosine, adenosine triphosphate and electrical stimulation: Lack of antagonism by theophylline or ATP treatment, Br. J. Pharmacol., 67: 293–299.PubMedCrossRefGoogle Scholar
  2. Bennett, M. R., Burnstock, G., and Holman, M. E. 1963. The effect of potassium and chloride ions on the inhibitory potential recorded in the guinea-pig tanea coli. J. Physiol., 164: 33p–34 p.Google Scholar
  3. Bennett, M. R., Burnstock, G., and Holman, M. E. 1966a. Transmission from perivascular inhibitory nerves to the smooth muscle of the guinea-pig taenia coli. J. Physiol., 752: 527–540.Google Scholar
  4. Bennett, M. R., Burnstock, G., and Holman, M. E. 1966b. Transmission from intramural inhibitory nerves to the smooth muscle of the guinea-pig taenia coli. J. Physiol., 182: 541–558.PubMedGoogle Scholar
  5. Berger, W. 1963. Die Doppelsaccharosetrennwandtechnik; Eine Methode zur Untersuchung des Mem- branpotentials und der Membraneigenschaften glatter Muskelzellen. Pflugers Arch., 277: 570–576.CrossRefGoogle Scholar
  6. Blaustein, M. P., and Goldring, J. M. 1975. Effects of potassium veratridine and Scorpion Venom on calcium accumulation and transmitter release by nerve terminals in vitro. J. Physiol., 247: 651–655.Google Scholar
  7. Bloom, F. E., Hoffer, B. J., Battenberg, E. R., Siggins, G. R., Steiner, A. L., Parker, C. W., and Wedner, H. J. 1972. Adenosine 3’,5’-monophosphate is localized in cerebellar neurons: Immunofluorescence evidence. Science, 177: 436–438.PubMedCrossRefGoogle Scholar
  8. Bolton, T. B. 1979. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev., 59/606–718.PubMedGoogle Scholar
  9. Bolton, T. B., Tomita, T., and Vassort, G. 1981. Voltage clamp and the measurement of ionic conductances in smooth muscle. In: Smooth Muscle, pp. 47–63. Ed. by Biilbring, E., Brading, A. F., Jones, A. W., and Tomita, T. Edward Arnold, London.Google Scholar
  10. Bowman, A., and Gillespie, J. S. 1982. Block of some non-adrenergic inhibitory responses of smooth muscle by a substance from haemolysed erythrocytes. J. Physiol., 328: 12–25.Google Scholar
  11. Bowman, A., Gillespie, J. S., and Pollock, D. 1982. Oxyhaemoglobin blocks nonadrenergic non- cholinergic inhibition in the bovine retractor penis muscle. Europ. J. Pharmacol., 55: 221–224.CrossRefGoogle Scholar
  12. Biilbring, E. 1954. Membrane potentials of smooth muscle fibres of the taenia coli of the guinea-pig. J. Physiol., 125: 302–315.Google Scholar
  13. Biilbring, E., and Tomita, T. 1967. Properties of the inhibitory potential of smooth muscle as observed in the response to field stimulation of the guinea-pig taenia coli. J. Physiol., 189: 299–315.Google Scholar
  14. Burnstock, G. 1969. Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates. Pharmacol. Rev., 27: 247–324.Google Scholar
  15. Burnstock, G. 1972. Purinergic nerves. Pharmacol. Rev., 24: 509–581.PubMedGoogle Scholar
  16. Burnstock, G. 1979. Past and current evidence for the purinergic nerve hypothesis, in: Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides, pp. 3–32. Ed. by Baer, H, P., and Drummond, G. J. Raven Press, New York.Google Scholar
  17. Burnstock, G. 1981. An introduction to purinergic receptors. In: Purinergic Receptors, pp. 1–45. Ed. by Burnstock, G. Chapman and Hall, London.CrossRefGoogle Scholar
  18. Burnstock, G., and Straub, R. W. 1958. A method for studying the effects of ions and drugs on the resting and action potentials in smooth muscle with external electrodes. J. Physiol., 740: 156–167.Google Scholar
  19. Burnstock, G., Cocks, T., Kasakov, L., and Wong, H. K. 1978. Direct evidence for ATP release from non-adrenergic, non-cholinergic (‘purinergic’) nerves in the guinea-pig taenia coli and bladder. Europ. J. Pharmacol., 49: 145–149.Google Scholar
  20. Coburn, R. F., Ohba, M., and Tomita, T. 1975. Recording of intracellular electrical activity with the sucrose-gap method. In: Methods in Pharmacology, volume 3, pp. 231–245. Ed. By Daniel, E. E., and Paton, D. M. Plenum Press, New York.Google Scholar
  21. Creed, K. E., and Gillespie, J. S. 1977. Some electrical properties of the rabbit anococcygeus muscle and a comparison of the effects of inhibitory nerve stimulation in the rat and rabbit. J. Physiol,, 273: 137–153.PubMedGoogle Scholar
  22. Creed, K. E., Gillespie, J. S., and Muir, T. C. 1975. The electrical basis of excitation and inhibition in the rat anococcygeus muscle. J. Physiol., 245: 33–47.PubMedGoogle Scholar
  23. Cusack, N. J., and Planker, M. 1979. Relaxation of isolated taenia coli of guinea-pig by enantiomers of 2-azido analogues of adenosine and adenine nucleotides. Br. J. Pharmacol., 67: 153–158.PubMedGoogle Scholar
  24. Daniel, E. E., and Posey-Daniel, V. 1984. The structural comparison of esophageal lower sphincter (LES) and body circular muscle (BCM) from opossum. Role of interstitial cells of Cajal. Am. J. Physiol., 246: G305–G315.PubMedGoogle Scholar
  25. Daniel, E. E., Taylor, G. S., Daniel, V. P., and Holman, M. E. 1977. Can non-adrenergic inhibitory varicosities be identified structurally? Can. J. Physiol. Pharmacol., 55: 243–250.PubMedCrossRefGoogle Scholar
  26. Daniel, E. E., Helmy-Elkholy, A., Jager, L. P., and Kannan, M. S. 1983. Neither a purine nor VIP is the mediator of inhibitory nerves of opossum oesophageal smooth muscle. J. Physiol., 336: 243–260.PubMedGoogle Scholar
  27. Daniel, E. E., Jager, L. P., Jury, J., Helmy-Elkholy, A., Kannan, M. S., Posey-Daniel, V. 1984. The mediators and mechanisms causing the non-adrenergic, non-cholinergic nerve responses in opossum esophagus. Role of interstitial cells of Cajal. Biomed. Res., in press.Google Scholar
  28. Den Hertog, A. 1981. Calcium and the α-action of catecholamines on guinea-pig taenia caeci. J. Physiol., 376: 109–125.Google Scholar
  29. Den Hertog, A. 1982. Calcium and the action of adrenaline, adenosine triphosphate and carbachol on guinea-pig taenia caeci. J. Physiol423: 423–439.Google Scholar
  30. Den Hertog, A., and Jager, L. P. 1975. Ion fluxes during the inhibitory junction potential in the guinea- pig taenia coli. J. Physiol., 250: 681–691.Google Scholar
  31. Downes, H., and Taylor, S. M. 1983. Distinctive pharmacological profile of a nonadrenergic inhibitory system in bullfrog lung. Br. J. Pharmacol., 78: 339–351.PubMedCrossRefGoogle Scholar
  32. Eccles, J. C. 1964. The Physiology of Synapses. Springer Verlag, Berlin.CrossRefGoogle Scholar
  33. Fedan, J. S., Hogaboom, G. K., O’Donnell, J. P., Colby, J., and Westfall, D. P. 1981. Contribution by purines to the neurogenic response of the vas deferens of the guinea pig. Europ. J. Pharmacol., 69: 41–53.CrossRefGoogle Scholar
  34. Fedan, J. S., Hogaboom, G. K., Westfall, D. P., and O’Donnell, J. P. 1982. Comparison of the effects of arylazido aminopropionyl ATP (ANAPP3), an ATP antagonist, on responses of the smooth muscle of the guinea-pig vas deferens to ATP and related nucleotides. Europ. J. Pharmacol., 85: 211–290.CrossRefGoogle Scholar
  35. Ferrero, J. D., and Frischknecht, R. 1983. Different effector mechanisms for ATP and adenosine hyperpolarization in guinea-pig taenia coli. Europ. J. Pharmacol., 87: 151–154.CrossRefGoogle Scholar
  36. Frew, R., and Lundy, P. M. 1982. Evidence against ATP being the nonadrenergic, noncholinergic inhibitory transmitter in guinea pig stomach. Europ. J. Pharmacol., 81: 333–336.CrossRefGoogle Scholar
  37. Gibbins, I. L. 1982. Lack of correlation between ultrastructural and pharmacological types of non-adrenergic autonomic nerves. Cell Tissue Res., 221: 551–581.PubMedCrossRefGoogle Scholar
  38. Ginsborg, B. L., and Hirst, G. D. S. 1972. The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat. J. Physiol., 224: 629–645.PubMedGoogle Scholar
  39. Hakanson, R., Leander, S., Sundler, F., and Uddman, R. 1981. P-type nerves: purinergic or pepti-dergic? In: Cellular Basis of Chemical Messengers in the Digestive System, pp. 169–200. (UCLA Forum Med. Sc., 23 ), Academic Press, London.Google Scholar
  40. Huizinga, J. D. 1981. Intestinal motility; regulatory function of adenosine and adenosine triphosphate. Thesis, State University, Groningen, the Netherlands.Google Scholar
  41. Huizinga, J. D., and Den Hertog, A. 1980. Inhibition of fundic strips from guinea-pig stomach: the effect of theophylline on responses to adenosine, ATP and intramural nerve stimulation. Europ. J. Pharmacol., 63: 259–265.CrossRefGoogle Scholar
  42. Huizinga, J. D., Pielkenrood, J. M., and Den Hertog, A. 1981. Dual action of high energy adenine nucleotides in comparison with responses evoked by other adenine derivatives and intramural nerve stimulation on smooth muscle. Europ. J. Pharmacol., 74: 175–180.CrossRefGoogle Scholar
  43. Ito, Y., and Takeda, K. 1982. Non-adrenergic inhibitory nerves and putative transmitters in the smooth muscle of cat trachea. J. Physiol., 550: 497–511.Google Scholar
  44. Jager, L. P. 1974. The effect of catecholamines and ATP on the smooth muscle cell membrane of the guinea-pig taenia coli. Europ. J. Pharmacol., 25: 372–382.Google Scholar
  45. Jager, L. P. 1976. Effects of dipyridamole on the smooth muscle cells of the guinea-pig’s taenia coli. Arch. Int. Pharmacodyn. Therap., 227: 40–53.Google Scholar
  46. Jager, L. P. 1979. Effects of purinergic compounds on excitable membranes, in: Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides, pp. 369–376. Ed. by Baer, H. P., and Drummond, G. I. Raven Press, New York.Google Scholar
  47. Jager, L. P., and Schevers, J. A. M. 1980. A comparison of effects evoked in guinea-pig taenia caecum by purine nucleotides and by “purinergic” nerve stimulation. J. Physiol., 299: 75–83.PubMedGoogle Scholar
  48. Jager, L. P., Jury, J., and Daniel, E. E. 1984. Electrophysiological and pharmacological characteri-zation of the NANC-nerve mediated inhibition of the circular muscle layer of the opossum esophagus. In: Gastrointestinal motility, pp. 9–16. Ed. by Roman, CI. MTP, Lancaster.CrossRefGoogle Scholar
  49. Kao, C. Y. 1966. Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena. Pharmacol. Rev., 75: 997–1049.Google Scholar
  50. Kasakov, L., and Burnstock, G. 1982. The use of the slowly degradable analog, a-p methylene ATP, to produce desensitisation of the P2-purinoceptor: Effect on non-adrenergic, non-cholinergic responses of the guinea-pig urinary bladder. Europ. J. Pharmacol., 86: 291–295.Google Scholar
  51. Klabunde, R. E. 1983. Effects of dipyridamole on postischemic vasodilation and extracellular aden-osine. Am. J. Physiol., 244. H273–H280.PubMedGoogle Scholar
  52. Kubota, M. 1982. Electrical and mechanical properties and neuro-effector transmission in the smooth muscle layer of the guinea-pig ileocecal junction. Pflügers Arch., 394: 355–361.PubMedCrossRefGoogle Scholar
  53. Langley, J. N. 1898. On inhibitory fibres in the vagus for the end of the oesophagus and the stomach. J. Physiol., 23: 407–414.PubMedGoogle Scholar
  54. Lim, S. P., and Muir, T. C. 1984. The electrical basis for the inhibitory response of the guinea pig internal anal sphincter to nerve stimulation and drugs. In: Gastrointestinal Motility, pp. 413–420. Ed. by Roman, CI. MTP Lancaster.CrossRefGoogle Scholar
  55. Loewi, O. 1921. Über humorale Übertragbarkeit der Herznervenwirkung, 1, Mitteilung. Pfiigers Arch., 189: 239–242.CrossRefGoogle Scholar
  56. Maas, A. J. J. 1980. Inhibition and post inhibitory excitation in guinea-pig taenia caeci. Thesis, State University, Groningen, the Netherlands.Google Scholar
  57. Maas, A. J. J. 1981. The effect of apamin in responses evoked by field stimulation in guinea-pig taenia caeci. Europ. J. Pharmacol., 73: 1–19.CrossRefGoogle Scholar
  58. Maas, A. J. J., and Den Hertog, A. 1980. The effect of the phenyl phosphonate N-0164 on prostaglandin action and on post inhibitory excitation in the taenia of guinea-pig caecum. Europ. J. Pharmacol., 62: 157–166.Google Scholar
  59. Maas, A. J. J., Den Hertog, A., Ras, R., and Van der Akker, J. 1980. The action of apamin on guinea- pig taenia caeci. Europ. J. Pharmacol., 67: 265–274.CrossRefGoogle Scholar
  60. Maguire, M. H., and Satchell, D. G. 1979. The contribution of adenosine to the inhibitory actions of adenine nucleotides on the guinea-pig taenia coli: Studies with phosphate-modified adenine nucleotide analogs and dipyridamole. J. Pharmacol. Exp. Therap, 211: 626–631.Google Scholar
  61. Maguire, M. H., and Satchell, D. G. 1981. Purinergic receptors in visceral smooth muscle. In: Pur- inergic Receptors, pp. 47–92 Ed. by Burnstock, G. Chapman and Hall, London.CrossRefGoogle Scholar
  62. McKenzie, S. G., Frew, R., and Bär, H. P. 1977. Effects of adenosine and related compounds on adenylate cyclase and cyclic AMP levels in smooth muscle. Europ. J. Pharmacol., 47: 193–203.Google Scholar
  63. Meldrum, L. A., and Burnstock, G. 1983. Evidence that ATP acts as a cotransmitter with nonadrenaline in sympathetic nerve supplying the guinea-pig vas deferens. Europ. J. Pharmacol., 92: 161–165.CrossRefGoogle Scholar
  64. Muir, T. C., and Smart, N. G. 1983. The effect of Clonidine on the response to stimulation of non- adrenergic non-cholinergic nerves in the guinea-pig urinary bladder in-vitro. J. Pharm. Pharmacol., 35: 234–237.PubMedCrossRefGoogle Scholar
  65. Nakatsu, K., and Bartlett, V. 1979. Multiple adenine derivative receptors in rat ileum and electrical degradation of purine drugs. In: Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides, pp. 79–84. Ed. by Baer, H. P., and Drummond, G. I. Raven Press, New York.Google Scholar
  66. Ohga, A., and Taneike, T. 1977. Dissimilarity between the responses to adenosine triphosphate or its related compounds and non-adrenergic inhibitory nerve stimulation in the longitudinal smooth muscle of pig stomach. Br. J. Pharmacol., 60: 221–231.PubMedCrossRefGoogle Scholar
  67. Orrego, F. 1979. Criteria for the identification of central neurotransmitters, and their application to studies with some nerve tissue preparations in vitro. Neuroscience, 4: 1037–1057.PubMedCrossRefGoogle Scholar
  68. Pearson, J. D., Carleton, J. S., Hutchings, A., and Gordon, J. L. 1978. Uptake and metabolism of adenosine by pig aortic endothelial and smooth muscle cells in culture. Biochem. J., 170: 265–271.PubMedGoogle Scholar
  69. Phillis, J. W., Edstrom, J. P., Kostopoulos, G. K., and Kirkpatrick, J. R. 1979. Effects of adenosine and adenine nucleotides on synaptic transmission in the cerebral cortex. Can. J. Physiol. Pharmacol., 57: 1289–1312.CrossRefGoogle Scholar
  70. Robinson, P. M., McLean, J. R., and Burnstock, G. 1971. Ultrastructural identification of noradrenergic inhibitory nerve fibres. J. Pharmacol. Exp. Therap., 179: 149–160.Google Scholar
  71. Satchell, D. G., Lynch, A., Bourke, P. M., and Burnstock, G. 1972. Potentiation of the effects of exogenously applied ATP and purinergic nerve stimulation on the guinea-pig taenia coli by dipyridamole and hexobendine. Europ. J. Pharmacol., 79: 343–350.CrossRefGoogle Scholar
  72. Sjögren, C., and Andersson, K. E. 1979a. Inhibition of ATP-induced contraction in the guinea-pig urinary bladder in vitro and in vivo. Acta Pharmacol. Toxicol., 44: 221–227.Google Scholar
  73. Sjögren, C., and Andersson, K. E. 1979b. Effects of cholinoceptor blocking drugs, adrenoceptor stimulants, and calcium antagonists on the transmurally stimulated guinea-pig urinary bladder in vitro and in vivo. Acta Pharmacol. Toxicol., 44: 228–234.CrossRefGoogle Scholar
  74. Stach, W., 1972, Der Plexus entericus extremus des Dickdarmes und Scine Beziehungen zu den in- terstitiellen Zellen (Cajal). Z. Mikrosk. Anatl. Forsch., 82: 245–212.Google Scholar
  75. Su, C. 1983. Purinergic neurotransmission and neuromodulation. Ann. Rev. Pharmacol. Toxicol., 23: 397–411.Google Scholar
  76. Thuneberg, L. 1982. Interstitial cells of Cajal: Intestinal pacemaker cells? Adv. Anat. Embryol. Cell Biol., 71:1–130.PubMedCrossRefGoogle Scholar
  77. Tomita, T. 1972. Conductance change during the inhibition potential in the guinea-pig taenia coli. J. Physiol., 225: 693–703.PubMedGoogle Scholar
  78. Tomita, T., and Watanabe, H. 1973. A comparison of the effects of adenosine triphosphate with noradrenaline and with the inhibitory potential of the guinea-pig taenia coli. J. Physiol., 237: 167–177.Google Scholar
  79. Werman, R. 1966. Criteria for identification of a central nervous system transmitter. Comp. Biochem. Physiol., 75: 745–766.Google Scholar
  80. Weston, A. H. 1973a. The effect of desensitization to adenosine triphosphate on the peristaltic reflex in guinea-pig ileum. Br. J. Pharmacol., 47: 606–608.Google Scholar
  81. Weston, A. H. 1973b. Nerve-mediated inhibition of mechanical activity in rabbit duodenum and the effects of desensitization to adenosine and several of its derivatives. Br. J. Pharmacol., 48: 302–308.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Lowie P. Jager
    • 1
  • Adriaan den Hertog
    • 2
  1. 1.Department of PharmacologyCentral Veterinary InstituteLelystadThe Netherlands
  2. 2.Department of PharmacologyState UniversityGroningenThe Netherlands

Personalised recommendations