The Measurement of Adenosine and Adenine Nucleotides in Tissues and Body Fluids

  • Dianne R. Webster


The measurement of adenosine and adenosine-related compounds is of interest to workers in many different fields. As the purpose of research varies so do the compounds of interest, the sensitivity required of the assay, and the number of possible pitfalls in the difficult task of producing a measurement in an assay that accurately reflects the in vivo state. Among the questions to be asked before an assay method is chosen are: what equipment is available? What metabolites are of interest? Are these metabolites different levels of endogenous compounds or do they represent the fate of exogenous compounds? If one is concerned with the fate of exogenous compounds, what concentration is to be used and will direct chemical measurements be suitable or will radiolabel be necessary?


Uric Acid Adenine Nucleotide Adenosine Deaminase Purine Nucleoside Purine Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwal, R. P., Major, P. P., and Kufe, D. W. 1982. Simple and rapid high performance liquid chromatoraphic method for analysis of nucleosides in biological fluids. J. Chromatogr, 231A18–424.PubMedGoogle Scholar
  2. Armiger, L. C., Seelye, R. N., Morrison, M. A., and Hollis, D. G. 1984. Comparative biochemistry and fine structure of atrial and ventricular myocardium during autolysis in vitro. Basic Res. Cardiol., 79: 218–229.PubMedGoogle Scholar
  3. Baer, H. P., and Vriend, R. 1981. Effects of adenosine transport inhibitors in smooth muscle. Proc. West. Pharmacol. Soc, 24: 131–133.PubMedGoogle Scholar
  4. Bakay, B., Nissenen, E. A., Sweetman, L., and Nyhan, W. L. 1978. Analysis of radioactive and nonradioactive purine bases, purine nucleosides and purine nucleotides by high speed chromatography on a single column. Monogr. Hum. Genet, 70: 127–137.Google Scholar
  5. Bakhle, Y. S., and Chelliah, R. 1983. Metabolism and uptake of adenosine in rat isolated lung and its inhibition. Br. J. Pharmacol, 79: 509–515.PubMedGoogle Scholar
  6. Bergmeyer, H. U. (Ed.). 1974. Methods of Enzymatic Analysis, Vol. 4, 2nd English ed. Academic Press, New York.Google Scholar
  7. Bockman, E. L., Berne, R. M., and Rubio, R. 1976. Adenosine and active hyperemia in dog skeletal muscle. Am. J. Physiol, 230: 1531–1537.PubMedGoogle Scholar
  8. Brenton, D. P., Astrin, H. K., Cruikshank, M. K., and Seegmiller, J. E. 1977. Measurement of free nucleotides in cultured human lymphoid cells using high-pressure liquid chromatography. Biochem. Med, 77: 231–247.Google Scholar
  9. Brolsma, M. F. J., Oerlemans, F. T. J., Verberg, M. P., and de Bruyn, C. H. M. M. 1982. Isotach- ophoretic analysis of some compounds involved in energy metabolism in normal and pathological human muscle extracts. J. Clin. Chem. Clin. Biochem, 20: 352.Google Scholar
  10. Brosh, S., Boer, P., and Sperling, O. 1982. Effects of fructose on synthesis and degradation of purine nucleotides in isolated rat hepatocytes. Biochem. Biophys. Acta, 777: 459–464.Google Scholar
  11. Brown, P. R., Krstulovic, A. M., and Hartwick, R. A. 1980. Current state of the art in the HPLC analyses of free nucleotides, nucleosides and bases in biological fluids. In: Advances in Chromatography, Volume 18, pp. 101–138. Ed. by Giddings, J. C., Grushka, E., Cazes, J., and Brown, P. R.) Marcel Dekker, New York.Google Scholar
  12. Burke, W. J. 1982. A highly sensitive assay for S-adenosylmethionine by high performance chromatography. Anal. Biochem, 722: 258–261.Google Scholar
  13. Capogrossi, M. C., Holdiness, M. R., and Israili, Z. H. 1982. Determination of adenosine in normal human plasma and serum by high performance chromatography. J. Chromatogr, 227: 168–173.PubMedGoogle Scholar
  14. Coddington, A. 1974. Inosine. In: Methods of Enzymatic Analysis, Volume 4, pp. 1932-1934. Ed. by Bergmeyer, H. U. Academic Press, New York.Google Scholar
  15. Cohen, M. B., Maybaum, J., and Sadee, W. 1980. Analysis of purine ribonucleotides and deoxyri-bonucleotides in cell extracts by high-performance liquid chromatography. J. Chromatogr 795: 435–441.Google Scholar
  16. Crabtree, G. W., and Henderson, J. F. 1971. Rate-limiting steps in the interconversion of purine ribonucleotides in Ehrlich ascites tumor cells in vitro. Cancer Res, 37: 985–991.Google Scholar
  17. De Abreu, R. A., van Baal, J. M., De Bruyn, C. H. M. M., Bakkeren, J. A. J. M., and Schretlen, E. D. A. M. 1982. High-performance liquid chromatographic determination of purine and pyrim- idine bases, ribonucleosides, deoxyribonucleosides and cyclic ribonucleotides in biological fluids. J. Chromatogr, 229: 67–75.PubMedGoogle Scholar
  18. Divekar, A. Y. 1976. Adenosine phosphorylase activity as distinct from inosine-guanosine phospho-rylase activity in sarcoma 180 cells and rat liver. Biochem. Biophys. Acta, 422: 15–28.PubMedGoogle Scholar
  19. Doni, M. G. 1981. Adenosine uptake and deamination by blood platelets in different mammalian species. Haemostasis, 70: 79–88.Google Scholar
  20. Dresse, A., Chevolet, C., Delapierre, D., Masset, H., Weisenberger, H., Bolzer, G., and Heinzel, H. 1982. Pharmacokinetics of dipyridamole (Persantine) and its effect on platelet adenosine uptake in man. Eur. J. Clin. Pharmacol, 23: 229–234.PubMedGoogle Scholar
  21. Earle, M. F., and Glazer, R. I. 1983. 2’deoxycoformycin toxicity in murine spleen lymphocytes. Mol. Pharmacol, 23: 165–170.Google Scholar
  22. Fredholm, B. B. 1975. Release of adenosine-like material from isolated perfused dog adipose tissue following sympathetic nerve stimulation and its inhibition by adrenergic a-receptor blockade. Acta. Physiol. Scand, 96: 422–430.Google Scholar
  23. Fredholm, B. B., and Hedqvist, P. 1978. Release of 3H-purines from [3H]-adenine labelled rabbit kidney following sympathetic nerve stimulation and its inhibition by a-adrenoceptor blockade. Br. J. Pharmacol, 64: 239–245.PubMedGoogle Scholar
  24. Fredholm, B. B., and Sollevi, A. 1981. The release of adenosine and inosine from canine subcutaneous adipose tissue by nerve stimulation and noradrenaline. J. Physiol, 313: 351–367.PubMedGoogle Scholar
  25. Fried, R., and Fried, L. W. 1974. Hypoxanthine and xanthine. Colorimetric measurement. In: Methods of Enzymatic Analysis, Volume 4, pp. 1945–1950. Ed. by Bergmeyer, H. V. Academic Press, New York.Google Scholar
  26. Gardiner, D. G. 1979. A rapid and sensitive fluorimetric assay for adenosine, inosine, and hypoxanthine. Anal. Biochem, 95: 377–382.PubMedGoogle Scholar
  27. Gehrke, C. W., Kuo, K. C., Davis, G. E., Suits, R. D., Waalkes, T. P., and Borek, E. 1978. Quantitative high-performance liquid chromatography of nucleosides in biological materials. J. Chromatogr 150: 455–416.PubMedGoogle Scholar
  28. Gharib, A., Sarda, N., Chabannes, B., Cronenberger, L., and Pacheco, H. 1982. The regional concentrations of S-adenosyl-L-methionine, S-adenosyl-L-homocysteine, and adenosine in rat brain. J. Neurochem., 38: 810–815.PubMedGoogle Scholar
  29. Glad, M., Ohlson, S., Mansson, L., Mansson, M.-O., and Mosbach, K. 1980. High-performance liquid affinity chromatography of nucleosides, nucleotides and carbohydrates with boronic acid-sub- stituted microparticulate silica. J. Chromatogr., 200: 254–260.Google Scholar
  30. Goday, A., Simmonds, H. A., Webster, D. R., Levinsky, R. J., Watson, A. T., and Hoffbrand, A. V. 1983. Importance of platelet-free preparations for evaluating lymphocyte nucleotide levels in inherited or acquired immunodeficiency syndromes. Clin. Sci., 65: 635–643.PubMedGoogle Scholar
  31. Goswami, T., and Pande, S. V. 1981. Syringes are unsuitable for pipetting submicromolar solutions of nucleoside triphosphates because of adsorbtion. Anal. Biochem., 117: 336–338.PubMedGoogle Scholar
  32. Gruber, W., Mollering, H., and Bergmeyer, H. V. 1974. Analytical differentiation of purine and py- rimidine nucleotides. Determination of ADP, ATP and sum of GTP and ITP in biological material. In: Methods of Enzymatic Analysis, Volume 4, pp. 2078–2087. Ed. by Bergmeyer, H. U. Academic Press, New York.Google Scholar
  33. Harkness, R. A., Simmonds, R. J., and Coade, S. B. 1983. Purine transport and metabolism in man: The effect of exercise on concentrations of purine bases, nucleosides and nucleotides in plasma, urine, leucocytes and erthrocytes. Clin. Sci., 64: 333–340.PubMedGoogle Scholar
  34. Harmenberg, J., Larsson, A., and Hagberg, C. E. 1983. Reversed-phase high-performance liquid chromatography (HPLC) of nucleosides with special reference to deoxythymidine. J. Liq. Chromatogr, 6: 655–666.Google Scholar
  35. Harmsen, E., de Jong, J. W., and Serruys, P. W. 1981. Hypoxanthine production by ischemic heart demonstrated by high-pressure liquid chromatography of blood purine nucleosides and oxypurines. Clin. Chim. Acta, 775: 73–84.Google Scholar
  36. Harmsen, E., de Tombe, P. P., and de Jong, J. W. 1982. Simultaneous determination of myocardial adenine nucleotides and creatine phosphate by high-performance liquid chromatography. J. Chromatogr, 230: 131–136.PubMedGoogle Scholar
  37. Hartwick, R. A., Assenza, S. P., and Brown, P. R. 1979a. Identification and quantitation of nucleosides, bases and other uv-absorbing compounds in serum, using reversed-phase high performance liquid chromatography, I. Chromatographic methodology. J. Chromatogr, 186: 641–658.Google Scholar
  38. Hartwick, R. A., Krstulovic, A. M., and Brown, P. R. 1979b. Identification and quantitation of nucleosides, bases and other uv-absorbing compounds in serum, using reversed phase high perfor- mation liquid chromatography II. Evaluation of human sera. J. Chromatogr, 186: 659–676.PubMedGoogle Scholar
  39. Hirschhorn, R., Roegner-Maniscako, V., Kuritsky, L., and Rosen, F. S. 1981. Bone marrow transplantation only partially restores purine metabolites to normal in adenosine deaminase-deficient patients. J. Clin. Invest, 65: 1387–1393.Google Scholar
  40. Holmsen, H., Dangelmaier, C. A., and Akkerman, J. -W. N. 1983. Determination of level of glycolytic intermediates and nucleotides in platelets by pulse-labelling with [32P] orthosphosphate. Anal. Biochem, 131: 266–272.PubMedGoogle Scholar
  41. Hunting, D., and Henderson, J. F. 1981. Determination of deoxynucleoside triphosphates using DNA polyerase: A critical evaluation. Can. J. Biochem, 59: 723–727.PubMedGoogle Scholar
  42. Hunting, D., Hordern, J., and Henderson, J. F. 1981. Quantitative analysis of purine and pyrimidine metabolism in Chinese hamster ovary cells. Can. J. Biochem., 59: 838–847.PubMedGoogle Scholar
  43. Hutton, J. J., Wigninton, D. A., Coleman, M. S., Fuller, S. A., Limouze, S., and Lamplin, B. C. 1981. Biochemical and functional abnormalities in lymphocytes from an adenosine deaminase-deficient patient during enzyme replacement therapy. J. Clin. Invest, 65: 413–421.Google Scholar
  44. Ingwall, J. S., Fossel, E. T., Kloner, R. F., and Goldhaber, S. Z. 1982. A supplement of inosine aids the salvage of rodent myocardium injured by hypoxia. J. Clin. Chem. Clin. Biochem, 20: 378.Google Scholar
  45. Israel, M., Lesbats, B., Manaranche, R., Meunioe, F. M., and Frachon, P. 1980. Retrograde inhibition of transmitter release by ATP. J. Neurochem, 34: 923–932.PubMedGoogle Scholar
  46. Jaworek, D., Gruber, W., and Bergmeyer, H. V. 1974. Adenosine-5-triphosphate. Determination with 3-phosphoglycerate kinase. In: Methods of Enzymatic Analysis, Volume 4, pp. 2097–2101. Ed. by Bergmeyer, H. V. Academic Press, New York.Google Scholar
  47. Jhamandas, K., and Dumbrille, A. 1980. Regional release of [3H]adenosine derivatives from rat brain in vivo: Effect of excitory amino acids, opiate agonists and benzodiazepines. Can. J. Physiol. Pharmacol 55: 1262–1278.Google Scholar
  48. Jorgensen, S. 1974. Hypoxanthine and xanthine. UV assay. In: Methods of Enzymatic Analysis, Volume 4, pp. 1941–1945. Ed. by Bergmeyer, H. U. Academic Press, New York.Google Scholar
  49. Juengling, E., and Kammermeir, H. 1980. Rapid assay of adenine nucleotides or creatine compounds in extracts of cardiac tissue by paired-ion reverse-phase high-performance liquid chromatography. Anal. Biochem, 102: 358–361.PubMedGoogle Scholar
  50. Kefford, R. F., and Fox, R. M. 1982. Purine deoxynucleoside toxicity in non-dividing human lymphoid cells. Cancer. Res, 42: 324–330.PubMedGoogle Scholar
  51. Khym, J. X. 1975. An analytical system for rapid separation of tissue nucleotides at low pressures on conventional ion exchanger. Clin. Chem, 21: 1245–1253.PubMedGoogle Scholar
  52. Kimmich, G. A., Randies, J., and Brand, J. S. 1975. Assay of picomole amounts of ATP, ADP and AMP using the luciferase enzyme system. Anal. Biochem, 69: 187–206.PubMedGoogle Scholar
  53. Klabunde, R. E. 1983. Effect of dipyridamole on post ischemic vasodilation and extracellular adenosine. Am. J. Physiol, 244: H273–H280.Google Scholar
  54. Klabunde, R. E., and Mayer, S. E. 1979. Effects of ischemia on tissue metabolites in red (slow) and white (fast) skeletal muscle of the chicken. Circ. Res., 45: 366–373.PubMedGoogle Scholar
  55. Knox, J. H., and Jurand, J. 1981. Zwitterion-pair chromatography of nucleotides and related species. J. Chromatogr, 203: 85–92.Google Scholar
  56. Krstulovic, A. M., Hartwick, R. A., and Brown, P. R. 1979. Reversed-phase liquid chromatographic separation of 3’, 5’-cyclic ribonucleotides. Clin. Chem, 25: 235–241.PubMedGoogle Scholar
  57. Kuttesch, J. F., Schmalstieg, F. C., Nelson, J. A. 1978. Analysis of adenosine and other adenine compounds in patients with immunodeficiency diseases. J. Liq. Chromatogr, 7: 97–109.Google Scholar
  58. Lamprecht, W., and Trautschold, I. 1974. Adenosine-5’-triphosphate. Determination with hexokinase and glucose-6-phosphate dehydrogenase. In: Methods of Enzymatic Analysis, Volume 4, pp. 2101–2110. Ed. by Bergmeyer, H. U. Academic Press, New York.Google Scholar
  59. Lindberg, U., and Skoog, L. 1970. A method for the determination of dATP and dTTP in picomole amounts. Anal. Biochem., 34: 152–160.PubMedGoogle Scholar
  60. Lothrop, C. D., and Uziel, M. 1980. Rapid preparation of nucleotides from acid-soluble pools by chromatography on silica, as exemplified with acid extracts of cultured cells. Clin. Chem., 26: 1430–1434.PubMedGoogle Scholar
  61. Lowry, O. H., Passonneau, J. V., Hasselberger, F. X., and Schulz, D. W. 1964. Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J. Biol. Chem., 239: 18–30.PubMedGoogle Scholar
  62. Lundin, A., Rickardsson, A., and Thore, A. 1976. Continuous monitoring of ATP-converting reactions by purified firefly luciferase. Anal. Biochem., 75: 611–620.PubMedGoogle Scholar
  63. Michal, G., and Wunderwald, P. 1974. Adenosine-3’:5’-monophosphate, cyclic. In: Methods of Enzymatic Analysis, Volume 4, pp. 2136–2143. Ed. by Bergmeyer, H. U. Academic Press, New York.Google Scholar
  64. Mills, G. C., Goldblum, R. M., Newkirk, K. E., and Schmalsteig, F. C. 1978. Urinary excretion of purines, purine nucleosides and pseudouridine in adenosine deaminase deficiency. Biochem. Med., 20: 180–199.PubMedGoogle Scholar
  65. Mills, G. C., Goldblum, R. M., and Schmalstieg, F. C. 1981. Catabolism of adenine nucleotides in adenosine deaminase deficient erythrocytes. Life Sci., 29: 1811–1820.PubMedGoogle Scholar
  66. Möllering, H., and Bergmeyer, H. U. 1974. Adenosine. In: Methods of Enzymatic Analysis, Volume 4, pp. 1917–1922. Ed. by Bergmeyer, H. U. Academic Press, New York.Google Scholar
  67. Moyer, J. D., and Henderson, J. F. 1983. Nucleoside triphosphate specificity of firefly luciferase. Anal. Biochem., J. 187–189.Google Scholar
  68. Näher, G. 1974. Adenine and Guanine. In: Methods of Enzymatic Analysis, Volume 4, pp. 1909–1915. Ed. by Bergmeyer, H. U. Academic Press, New York.Google Scholar
  69. Nordstom, C. -H., Rehncrona, S., Siesjö, B. K., and Westerberg, E. 1977. Adenosine in rat cerebral cortex: Its determination, normal values, and correlation to AMP and cyclic AMP during short- lasting ischemia. Acta. Physiol. Scand, 101: 63–11.Google Scholar
  70. Oerlemans, F., Verheggen, T., Mikkers, F., Everaerts, F., and De Bruyn, C. H. M. M. 1980. Analysis of serum purines and pyrimidines by isotachophoresis. In: Purine Metabolism in Man III, 122B, pp. 429–433. Ed. by Rapado, A., Watts, R. W. E., and De Bruyn, C. H. M. M. Plenum Press, New York.Google Scholar
  71. Olsson, R. A. 1970. Changes in content of purine nucleoside in canine myocardium during coronary occlusion. Circ. Res 26: 301–306.PubMedGoogle Scholar
  72. Olsson, R. A., Davis, C. J., Gentry, M. K., and Vomacka, R. B. 1978. A radioligand-binding assay for adenosine in tissue extracts. Anal. Biochem, 85: 132–138.PubMedGoogle Scholar
  73. Olsson, R. A., Saito, D., and Steinhart, C. R. 1982. Compartmentalization of the adenosine pool of dog and rat hearts. Circ. Res, 50: 617–626.PubMedGoogle Scholar
  74. Parker, J. C., Jones, C. E., and Smith, E. E. 1973. Determination of acid-soluble nucleosides and bases in myocardium by thin-layer methods. J. Chromatogr, 79: 360–363.PubMedGoogle Scholar
  75. Pearson, J. D., and Gordon, J. L. 1979. Vascular endothelial and smooth muscle cells in culture selectively release adenine nucleotides. Nature, 281: 384–386.PubMedGoogle Scholar
  76. Pearson, J. D., Carleton, J. S., and Gordon, J. L. 1980. Metabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smooth-muscle cells in culture. Biochem. J, 190: 421–429.PubMedGoogle Scholar
  77. Perrett, D., and Dean, B. 1977. The function of adenosine deaminase in human erythrocyte. Biochem. Biophys. Res. Comm, 77: 374–378.PubMedGoogle Scholar
  78. Pfadenhauer, E. H., and Tong, S. -D. 1979. Determination of inosine and adenosine in human plasma using high-performance liquid chromatography and a boronate affinity gel. J. Chromatogr, 762: 585–590.Google Scholar
  79. Plagemann, P. G. W., and Wohlheuter, R. M. 1981. 2-Deoxycorformycin inhibition of intracellular phosphorylation of adenosine in Novikoff rat hepatoma cells. Biochem. Pharmacol, 30: 417–426.Google Scholar
  80. Pon, R. T., and Ogilvie, K. K. 1981. Simultaneous analysis of nucleosides and nucleotides by high performance liquid chromatography. J. Chromatogr, 205: 202–205.Google Scholar
  81. Pruneau, D., Wülfert, E., Pascal, H., and Baron, C. 1982. High-performance liquid chromatographic procedure for measuring ATP and ADP levels in tissue microbiopsy: Application to rat wound healing proliferative tissue. Anal. Biochem, 119: 274–280.PubMedGoogle Scholar
  82. Rabinowitz, J. C. 1974. Adenosine-5-triphosphate. Determination with formyltetrahydrofolate synthetase. In: Methods of Enzymatic Analysis, Volume 4, pp. 2110–2111. Ed. by Bergmeyer, H. U. Academic Press, New York.Google Scholar
  83. Reddington, M., and Pusch, R. 1983. Adenosine metabolism in a rat hippocampal slice preparation: incorporation into S-adenosylhomocysteine. J. Neurochem, 40: 285–290.PubMedGoogle Scholar
  84. Reinhart, M. P., and Koroly, M. J. 1982. Analysis of nucleotides from Tetrahymena by high-performance liquid chromatography. Anal. Biochem, 779: 392 - 396.Google Scholar
  85. Sahota, A., Simmonds, H. A., Potter, C. F., Watson, J. G., Hugh-Jones, K., and Perrett, D. 1980. Adenosine and deoxyadenosine metabolism in the erythrocytes of a patient with adenosine-de- aminase deficiency. In: Purine Metabolism in Man III, 122A, pp. 397–401. Ed. by Rapado, A., Watts, R. W. E., and De Bruyn, C. H. M. M. Plenum Press, New York.Google Scholar
  86. Schiebe, P. E., Berat, E., and Bergmeyer, H. U. 1974. Uric Acid. In: Methods of Enzymatic Analysis, Volume 4, pp. 1951–1958. Ed. by Bergmeyer, H. U. Academic Press, New York.Google Scholar
  87. Schräder, J., Schütz, W., and Bardenheuer, H. 1981. Role of S-adenosylhomocysteine hydrolase in adenosine metabolism in mammalian heart. Biochem. J, 796: 65–70.Google Scholar
  88. Shmukler, H. W. 1972. The rapid chromatographic analysis of free nucleotides from rat brain. J. Chromatogr. Sci, 70: 38–40.Google Scholar
  89. Silinsky, E. M. 1975. On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve terminals. J. Physiol, 247: 145–162.PubMedGoogle Scholar
  90. Simmonds, H.A. 1969. Two-dimensional thin-layer high-voltage electrophoresis and chromatography for the separation of urinary purines, pyrimidines and pyrazolo pyrimidines. Clin. Chim. Acta, 23: 319–330.PubMedGoogle Scholar
  91. Simmonds, H. A., Sahota, A., Potter, C. F., Perrett, D., Hugh-Jones, K., and Watson, J. G. 1979. Purine metabolism in adenosine deaminase deficiency. In: Enzyme Defects and Immune Dysfunction. Ciba Foundation Symposium 68 (new series), pp. 255–262. Excerpta Medica, Amsterdam.Google Scholar
  92. Simmonds, H. A., Sahota, A., and Payne, R. 1980. A rapid screening method for inborn errors of purine and pyrimidine metabolism using isotachophoresis in Purine Metabolism in Man III, 122B, pp. 421–427. Ed. by Rapado, A., Watts, R. W. E., and De Bruyn, C. H. M. M. Plenum Press, New York.Google Scholar
  93. Simmonds, H. A., Webster, D. R., Perrett, D., Reiter, S., and Levinsky, R. J. 1982. Formation and degradation of deoxyadenosine nucleotides in inherited adenosine deaminase deficiency. Bioscience Rep, 2: 303–314.Google Scholar
  94. Simmonds, R. J., and Harkness, R. A. 1981. High-performance liquid chromatographic methods for base and nucleoside analysis in extracellular fluids and in cells. J. Chromatogr, 226: 369–381.PubMedGoogle Scholar
  95. Sixma, J. A., Lips, J. P. M., Trieschnigg, A. M. C., and Holmsen, H. 1976. Transport and metabolism of adenosine in human blood platelets. Biochim. Biophys. Acta, 443: 33–48.PubMedGoogle Scholar
  96. Smith, C. M. and Henderson, J. F. 1982. Deoxyadenosine triphosphate accumulation in erythrocytes of deoxycoformycin-treated mice. Biochem. Pharmacol, 57: 1545–1551.Google Scholar
  97. Spielmann, H., Jacob-Müller, U., and Schulz, P. 1981. Simple assay of 0.1–1.0 pmol of ATP, ADP and AMP in single somatic cells using purified luciferin-luciferase. Anal. Biochem, 775: 172–178.Google Scholar
  98. Stanley, P. E., and Williams, S. G. 1969. Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Anal. Biochem, 29: 381–392.PubMedGoogle Scholar
  99. Strehler, B. 1974. Adenosine triphosphate and creatine phosphate. Determination with luciferase. In: Methods of Enzymatic Analysis, Volume 4, pp. 2112–2126. Ed. by Bergmeyer, H. V. Academic Press, New York.Google Scholar
  100. Tattersall, M. H. N., Slowiaczek, P., and DeFazio, A. 1983. Regional variation in human extracellular purine levels. J. Lab. Clin. Med, 702: 411–420.Google Scholar
  101. Van Acker, K. J., Simmonds, H. A., Potter, C. F., and Cameron, J. S. 1977. Complete deficiency of adenine phosphoribosyltransferase. Report of a family. N. Engl. J. Med, 297: 127–132.PubMedGoogle Scholar
  102. Van Den Berghe, G., Bontemps, F., and Hers, H. -G. 1980. Purine catabolism in isolated rat hepa- tocytes. Influence of coformycin. Biochem. J, 755: 913–920.Google Scholar
  103. Wagner, J., Danzin, C., and Mamont, P. 1982. Reversed-phase ion pair liquid chromatographic procedure for the simultaneous analysis of S-adenosylmethionine, its metabolites and the natural polyamines. J. Chromatogr, 227: 349–368.PubMedGoogle Scholar
  104. Watkinson, W. P., Foley, D. H., Rubio, R., and Berne, R. M. 1979. Myocardial adenosine formation with increased cardiac performance in the dog. Am. J. Physiol, 236. H13–H21.Google Scholar
  105. Webster, H. K., and Whaun, J. M. 1981. Application of simultaneous uv-radioactivity high performance liquid chromatography to the study of intermediary metabolism. 1. Purine nucleotides, nucleosides and bases. J. Chromatogr, 209: 283–292.PubMedGoogle Scholar
  106. White, T. D., and Leslie, R. A. 1982. Depolarization-induced release of adenosine 5’-triphosphate from isolated varicosities derived from the myenteric plexus of the guinea pig small intestine. J. Neuroscience, 2: 206–215.Google Scholar
  107. Willemot, J., and Paton, D. M. 1981a. Metabolism and presynaptic inhibitory effects of adenosine in rat vas deferens. J. Anton. Pharmacol, 7: 217–224.Google Scholar
  108. Willemot, J., and Paton, D. M. 1981b. Metabolism and presynaptic inhibitory effects of 2’, 3’ and 5’adenine nucleotides in rat vas deferens. Arch. Pharmacol, 317: 110–114.Google Scholar
  109. Winn, H. R., Rubio, R., and Berne, R. M. 1981. Brain adenosine concentration during hypoxia in rats. Am. J. Physiol, 241: H235–H242.Google Scholar
  110. Wojcik, W. J., and Neff, N. H. 1982. Adenosine measurement by a rapid HPLC-Fluorometric method: Induced changes of adenosine content in regions of rat brain. J. Neurochem, 39: 280–282.PubMedGoogle Scholar
  111. Wu, P. H., and Phillis, J. W. 1978. Distribution and release of adenosine triphosphate in rat brain. Neurochem. Res, 3: 563–571.PubMedGoogle Scholar
  112. Zakaria, M., and Brown, P. R. 1981. High performance liquid column chromatography of nucleotides, nucleosides and bases. J. Chromatogr, 226: 267–290.PubMedGoogle Scholar
  113. Zimmerman, H. 1978. Turnover of adenine nucleotides in cholinergic synaptic vesicles of the torpedo electric organ. Neuroscience, 3: 827–836.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Dianne R. Webster
    • 1
  1. 1.Department of Pharmacology and Clinical PharmacologyUniversity of Auckland School of MedicineAucklandNew Zealand

Personalised recommendations