Classification of Adenosine Receptors in the Central Nervous System

  • T. W. Stone


It is important to realize that the classifications of adenosine receptors currently in vogue were devised as the result of work on the activity of adenylate cyclase (see Stone, 1981, 1982a). The independent reports from Londos and Wolff (1977), Van Calker et al., (1979), and later Londos et al. (1980) established the existence of a receptor accessible from the inside of intact cells, the P site, requiring an intact purine component of the agonist molecule and externally accessible A1 (or Ri) and A2 (or Ra) sites with strict structural requirements of the ribose portion of agonists. The P and A1 sites induce an inhibition of cyclase activity and the A2 site causes an increase.


Adenylate Cyclase Adenosine Receptor Transmitter Release Neuronal Firing Stratum Radiatum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baer, H. P., Muller, M. J., and Vriend, R. 1983. Adenosine receptors in smooth muscle. In: Physiology and Pharmacology of Adenosine Derivatives, pp. 77–84. Ed. by Daly, J. W., Kuroda, Y., Phillis, J. W., Shimizu, H., and Ui, M. Raven Press, New York.Google Scholar
  2. Bloom, F. E. 1975. The role of cyclic nucleotides in central synaptic function. Rev. Physiol. Biochem. Pharmacol., 74: 1–104.PubMedGoogle Scholar
  3. Bradford, H. F. 1975. Isolated nerve terminals as an in vitro preparation for the study of dynamic aspects of transmitter metabolism and release. In: Handbook of Psychopharmacology, Vol. I, pp. 191–252. Ed. by Iverson, L. L., Iversen, S. D., and Snyder, S. H. Plenum Press, New York.Google Scholar
  4. Bradshaw, C. M., Szabadi, E., and Roberts, M. H. T. 1973. The reflection of ejecting and retaining currents in the time course of neuronal responses to microelectrophoretically applied drugs. J. Pharm. Pharmac., 25: 513–520.Google Scholar
  5. Bruns, R. F. 1980. Adenosine receptor activation in human fibroblasts: Nucleoside agonists and antagonists. Can. J. Physiol. Pharmacol., 55: 673–691.Google Scholar
  6. Burnstock, G. 1978. A basis for distinguishing two types of purinergic receptor. In: Cell Membrane Receptors for Drugs and Hormones, pp. 107–118. Ed. by Bolis, L., and Straub, R. W. Raven Press, New York.Google Scholar
  7. De Groot, T. 1959. The rat forebrain in stereotaxic coordinates. Trans. R. Neth. Acad. Sci., 52: 1–40.Google Scholar
  8. Dodd, P. R., Hardy, J. A., Oakley, A. F., Edwardson, J. A., Perry, E. K., and Delannoy, J. P. 1981. A rapid method for preparing synaptosomes: Comparison with alternative procedures. Brain Res., 226: 107–110.PubMedCrossRefGoogle Scholar
  9. Ebstein, R. P., and Daly, J. W. 1982. Release of norepinephrine and dopamine from brain vesicular preparations: Effects of adenosine analogues. Cell. Mol. Neurobiol., 2: 193–204.PubMedCrossRefGoogle Scholar
  10. Frederickson, R. C., Jordan, L. M., and Phillis, J. W. 1971. The action of noradrenaline on central neurones: effect of pH. Brain Res. 55: 556–560.CrossRefGoogle Scholar
  11. Fredholm, B. B., Jonson, B., Lindgren, E., and Lindström, K. 1982. Adenosine receptors mediating cyclic AMP production in the rat hippocampus. J. Neurochem., 59. 165–175.CrossRefGoogle Scholar
  12. Harms, H. H., Wardeh, G., and Mulder, A. H. 1978. Adenosine modulates depolarisation induced release of (3H)-noradrenaline from slices of rat brain neocortex. Europ. J. Pharmacol., 49: 305–308.CrossRefGoogle Scholar
  13. Haycock, J. W., Levy, W. B., Denner, L. A., and Cotman, C. W., 1978. Effects of elevated (K+)0 on the release of neurotransmitters from cortical synaptosomes: efflux or secretion ? J. Neurochem., 50: 1113 - 1125.CrossRefGoogle Scholar
  14. Hughes, P. R., and Stone, T. W. 1983. Inhibition by purines of the ionotropic action of isoprenaline in rat atria. Br. J. Pharmacol., 50: 149–153.Google Scholar
  15. Kerkut, G. A., and Wheal, H. V. (eds.) 1981. Electrophysiology of Isolated Mammalian CNS Preparations. Academic Press, London.Google Scholar
  16. König, J. F. R., and Klippel, R. A. 1963. A Stereotaxic Atlas of the Rat Brain. Williams and Wilkins, Baltimore.Google Scholar
  17. Kuroda, Y. 1978. Physiological roles of adenosine derivatives which are released during neurotrans-mission in mammalian brain. J. Physiol. ( Paris ), 74: 463–470.Google Scholar
  18. Londos, C., and Wolff, J. 1977. Two distinct adenosine sensitive sites on adenylate cyclase. Proc. Natl. Acad. Sci. USA, 74: 5482–5486.Google Scholar
  19. Londos, C., Cooper, D. M. F., and Wolff, J. 1980. Subclasses of external adenosine receptors. Proc. Natl. Acad. Sci. USA, 77: 2551–2554.Google Scholar
  20. Mcllwain, H. 1975. Practical Neurochemistry. Churchill-Livingston, London.Google Scholar
  21. Morgan, P. F., Lloyd, H. G. E., and Stone, T. W. 1983. Benzodiazepine inhibition of adenosine uptake is not prevented by benzodiazepine antagonists. Europ. J. Pharmacol., 87: 121–126.Google Scholar
  22. Paton, D. M. 1981. Structure activity relations for presynaptic inhibition of noradrenergic and cholinergic transmission by adenosine: evidence for action on Ai receptors. J. Autonom. Pharmacol., 7: 287–290.CrossRefGoogle Scholar
  23. Pellegrino, L. J., Pellegrino, A. S., and Cushman, A. J. 1979. A Stereotaxic Atlas of the Rat Brain. Plenum Press, New York.Google Scholar
  24. Perkins, M. N., and Stone, T. W. 1980. Aminophylline and theophylline derivatives as antagonists of neuronal depression by adenosine: A microiontophoretic study. Arch. Int. Pharmacodyn., 246: 205–214.PubMedGoogle Scholar
  25. Perkins, M. N., Bowery, N. G., Hill, D. R., and Stone, T. W. 1981. Neuronal responses to ethyle- nediamine: preferential blockade by bicuculline. Neurosci. Lett., 23: 325–328.PubMedCrossRefGoogle Scholar
  26. Phillis, J. W. 1982. Evidence for an A2-like adenosine receptor on cerebral cortical neurones. J. Pharm. Pharmacol., 34: 453–454.PubMedCrossRefGoogle Scholar
  27. Phillis, J. W., Edstrom, J. P., Kostopoulos, G. K., and Kirkpatrick, J. R. 1979. Effects of adenosine and adenine nucleotides on synaptic transmission in the cerebral cortex. Can. J. Physiol. Pharmacol., 57: 1289–1312.PubMedCrossRefGoogle Scholar
  28. Reddington, M., and Schubert, P. 1979. Parallel investigations of the effects of adenosine on evoked potentials and cyclic AMP accumulation in hippocampus slices of the rat. Neurosci. Lett., 14: 31–42.Google Scholar
  29. Reddington, M., Lee, K. S., and Schubert, P. 1982. An Ai adenosine receptor, characterised by (3H)- cyclohexyladenosine binding, mediates the depression on evoked potentials in a rat hippocampal slice preparation. Neurosci. Lett., 25: 275–280.Google Scholar
  30. Segal, M. 1982. Intracellular analysis of a postsynaptic action of adenosine in the rat hippocampus. Europ. J. Pharmacol., 79: 193–200.Google Scholar
  31. Siggins, G. R., and Schubert, P. 1981. Adenosine depression of hippocampal neurons in vitro: An intracellular study of dose-dependent actions on synaptic and membrane potentials. Neurosci. Lett., 23: 55–60.PubMedCrossRefGoogle Scholar
  32. Smellie, F. W., Daly, J. W., Dunwiddie, T. V., and Hoffer, B. J. 1979. The dextro and levorotatory isomers of N-phenylisopropyladenosine: Stereospecific effects on cyclic AMP formation and evoked synaptic responses in brain slices. Life Sci., 25: 1739–1748.PubMedCrossRefGoogle Scholar
  33. Stone, T. W., 1972. Noradrenaline effects and pH. J. Pharm. Pharmacol. 24: 422–423.PubMedCrossRefGoogle Scholar
  34. Stone, T. W. 1973. Cortical pyramidal tract interneurones and their sensitivity to L-glutamic acid. J. Physiol., 233: 211–225.PubMedGoogle Scholar
  35. Stone, T. W. 1981. Physiological roles for adenosine and ATP in the nervous system. Neurosci., 6: 523–555.CrossRefGoogle Scholar
  36. Stone, T. W. 1982a. Purine receptors involved in the depression of neuronal firing in cerebral cortex. Brain Res., 248: 361–310.CrossRefGoogle Scholar
  37. Stone, T. W. 1982b. Cell membrane receptors for purines. Biosci. Rep., 2: 11–90.Google Scholar
  38. Stone, T. W. 1983. Purine receptors in the rat anococcygeus muscle. J. Physiol., 335. 591–608.PubMedGoogle Scholar
  39. Stone, T. W. 1985. Microiontophoresis and Pressure Ejection, (IBRO Series Methods in Neurosciences). Wiley and Sons, Chichester.Google Scholar
  40. Stone, T. W., and Perkins, M. N. 1981. Adenine dinucleotide effects on cortical neurones. Brain Res., 229: 241–245.PubMedCrossRefGoogle Scholar
  41. Stone, T. W., and Taylor, D. A. 1977. Microiontophoretic studies of the effects of cyclic nucleotides on excitability of neurones in the rat cerebral cortex. J. Physiol., 266: 523–543.PubMedGoogle Scholar
  42. Stone, T. W., Taylor, D. A., and Bloom, F. E. 1975. Cyclic AMP and cyclic GMP may mediate opposite neuronal responses in the rat cerebral cortex. Science, 757: 845–847.CrossRefGoogle Scholar
  43. Van Calker, D., Muller, M. and Hamprecht, B. 1979. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J. Neurochem., 35: 999–1005.CrossRefGoogle Scholar
  44. Wu. P. H., Phillis, J. W., and Thierry, D. L. 1982. Adenosine receptor agonists inhibit potassium- evoked calcium uptake by rat brain cortical synaptosomes. J. Neurochem., 59: 700–708.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • T. W. Stone
    • 1
  1. 1.Department of Physiology St. George’s Hospital Medical SchoolUniversity of LondonLondonUK

Personalised recommendations